DOI QR코드

DOI QR Code

A stability factor for structure-dependent time integration methods

  • 투고 : 2021.03.24
  • 심사 : 2023.07.18
  • 발행 : 2023.08.25

초록

Since the first family of structure-dependent methods can simultaneously integrate unconditional stability and explicit formulation in addition to second order accuracy, it is very computationally efficient for solving inertial problems except for adopting auto time-stepping techniques due to no nonlinear iterations. However, an unusual stability property is first found herein since its unconditional stability interval is drastically different for zero and nonzero damping. In fact, instability might occur for solving a damped stiffness hardening system while an accurate result can be obtained for the corresponding undamped stiffness hardening system. A technique of using a stability factor is applied to overcome this difficulty. It can be applied to magnify an unconditional stability interval. After introducing this stability factor, the formulation of this family of structure-dependent methods is changed accordingly and thus its numerical properties must be re-evaluated. In summary, a large stability factor can result in a large unconditional stability interval but also lead to a large relative period error. As a consequence, a stability factor must be appropriately chosen to have a desired unconditional stability interval in addition to an acceptable period distortion.

키워드

과제정보

The author is grateful to acknowledge that this study is financially supported by the Ministry of Science and Technology, Taiwan, R.O.C., under Grant No. MOST-109-2221-E-027-002.

참고문헌

  1. Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct., 85(7-8), 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004.
  2. Belytschko, T. and Hughes, T.J.R. (1983), Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., NorthHolland, Amsterdam.
  3. Chang, S.Y. (2001), "Analytical study of the superiority of the momentum equations of motion for impulsive loads", Comput. Struct., 79(15), 1377-1394. https://doi.org/10.1016/S0045-7949(01)00044-X.
  4. Chang, S.Y. (2002), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech., ASCE, 128(9), 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935).
  5. Chang, S.Y. (2006), "Accurate representation of external force in time history analysis", J. Eng. Mech., ASCE, 132(1), 34-45. https://doi.org/10.1061/(ASCE\)0733-9399(2006)132:1(34).
  6. Chang, S.Y. (2007b), "Improved explicit method for structural dynamics", J. Eng. Mech., ASCE, 133(7), 748-760. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(748).
  7. Chang, S.Y. (2009), "An explicit method with improved stability property", Int. J. Numer. Meth. Eng., 77(8), 1100-1120. https://doi.org/10.1002/nme.2452.
  8. Chang, S.Y. (2010), "A new family of explicit method for linear structural dynamics", Comput. Struct., 88(11-12), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002.
  9. Chang, S.Y. (2013), "An explicit structure-dependent algorithm for pseudo-dynamic testing", Eng. Struct., 46, 511-525. https://doi.org/10.1016/j.engstruct.2012.08.009.
  10. Chang, S.Y. (2014), "A family of non-iterative integration methods with desired numerical dissipation", Int. J. Numer. Meth. Eng., 100(1), 62-86. https://doi.org/10.1002/nme.4720.
  11. Chang, S.Y. (2015), "Dissipative, non-iterative integration algorithms with unconditional stability for mildly nonlinear structural dynamics", Nonlin. Dyn., 79(2), 1625-1649. https://doi.org/10.1007/s11071-014-1765-7.
  12. Chang, S.Y. (2018), "An unusual amplitude growth property and its remedy for structure-dependent integration methods", Comput. Meth. Appl. Mech. Eng., 330, 498-521. https://doi.org/10.1016/j.cma.2017.11.012.
  13. Chang, S.Y. (2019), "A dual family of dissipative structure-dependent integration methods", Nonlin. Dyn., 98(1), 703-734. https://doi.org/10.1007/s11071-019-05223-y.
  14. Chang, S.Y. (2020a), "An eigen-based theory for structure-dependent integration methods for nonlinear dynamic analysis", Int. J. Struct. Stab. Dyn., 20(12), 2050130. https://doi.org/10.1142/S0219455420501308.
  15. Chang, S.Y. (2020b), "Non-iterative methods for dynamic analysis of nonlinear velocity-dependent problems", Nonlin. Dyn., 101, 1473-1500. https://doi.org/10.1007/s11071-020-05836-8.
  16. Chang, S.Y. and Mahin, S.A. (1993), "Two new implicit algorithms of pseudodynamic test methods", J. Chin. Inst. Eng., 16(5), 651-664. https://doi.org/10.1080/02533839.1993.9677539.
  17. Chang, S.Y., (2007a), "Enhanced, unconditionally stable explicit pseudodynamic algorithm", J. Eng. Mech., ASCE, 133(5), 541-554. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:5(541).
  18. Chen, C. and Ricles, J.M. (2008), "Development of direct integration algorithms for structural dynamics using discrete control theory", J. Eng. Mech., ASCE, 134(8), 676-683. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(676).
  19. Chung, J. and Hulbert, G.M. (1993), "A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-a method", J. Appl. Mech., 60(6), 371-375. https://doi.org/10.1115/1.2900803.
  20. Clough, R. and Penzien, J. (2003), Dynamics of Structures, 3rd Edition, Computers & Structures, Inc., New York.
  21. Dubey, G. and Kumar, S. (2015), "Efficient methods for integrating weight function: A comparative analysis", Struct. Eng. Mech., 55(4), 885-900. http://doi.org/10.12989/sem.2015.55.4.885.
  22. Formica, G., Vaiana, N., Rosati, L. and Lacarbonara, W. (2021), "Pathfollowing of high-dimensional hysteretic systems under periodic forcing", Nonlin. Dyn., 103, 3515-3528. https://doi.org/10.1007/s11071-021-06374-7.
  23. Goudreau, G.L. and Taylor, R.L. (1972), "Evaluation of numerical integration methods in elasto-dynamics", Comput. Meth. Appl. Mech. Eng., 2, 69-97. https://doi.org/10.1016/0045-7825(73)90023-6.
  24. Gui, Y., Wang, J.T., Jin, F., Chen, C. and Zhou, M.X. (2014), "Development of a family of explicit algorithms for structural dynamics with unconditional stability", Nonlin. Dyn., 77(4), 1157-1170. https://doi.org/10.1007/s11071-014-1368-3.
  25. Hilber, H.M. and Hughes, T.J.R. (1978), "Collocation, dissipation, and 'overshoot' for time integration schemes in structural dynamics", Earthq. Eng. Struct. Dyn., 6, 99-118. https://doi.org/10.1002/eqe.4290060111.
  26. Hilber, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dyn., 5, 283-292. https://doi.org/10.1002/eqe.4290050306.
  27. Houbolt, J.C. (1950), "A recurrence matrix solution for the dynamic response of elastic aircraft", J. Aeronaut. Sci., 17, 540-550. https://doi.org/10.2514/8.1722.
  28. Hughes, T.J. and Pister, K.S. (1978), "Consistent linearization in mechanics of solids and structures", Comput. Struct., 8(3-4), 391-397. https://doi.org/10.1016/0045-7949(78)90183-9.
  29. Jator, S.N. (2015), "Implicit third derivative Runge-Kutta-Nystrom method with trigonometric coefficients", Numer. Algorithm., 70, 133-150. https://doi.org/10.1007/s11075-014-9938-5.
  30. Kara, D., Bozdogan, K.B. and Keskin, E. (2021), "A simplified method for free vibration analysis of wall frames considering soil structure interaction", Struct. Eng. Mech., 77(1), 37-46. http://doi.org/10.12989/sem.2021.77.1.037.
  31. Kolay, C. and Ricles, J.M. (2014), "Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation", Earthq. Eng. Struct. Dyn., 43, 1361-1380. https://doi.org/10.1002/eqe.2401.
  32. Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Extended implicit integration process by utilizing nonlinear dynamics in finite element", Struct. Eng. Mech., 64(4), 495-464. https://doi.org/10.12989/sem.2017.64.4.495.
  33. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
  34. Pellecchia, D., Vaiana, N., Spizzuoco, M., Serino, G. and Rosati, L. (2023), "Axial hysteretic behaviour of wire rope isolators: Experiments and modelling", Mater. Des., 225, 111436. https://doi.org/10.1016/j.matdes.2022.111436.
  35. Rezaiee-Pajand, M., Esfehani, S.A.H. and Karimi-Rad, M. (2018), "Highly accurate family of time integration method", Struct. Eng. Mech., 67(6), 603-614. https://doi.org/10.12989/sem.2018.67.6.603.
  36. Simos, T.E. (1998), "An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions", Comput. Phys. Commun., 115, 1-8. https://doi.org/10.1016/S0010-4655(98)00088-5.
  37. Soroushian, A. (2018), "A general rule for the influence of physical damping on the numerical stability of time integration analysis", J. Appl. Comput. Mech., 4(5), 467-481. https://doi.org/10.22055/JACM.2018.25161.1235.
  38. Tang, Y. and Lou, M.L. (2017), "New unconditionally stable explicit integration algorithm for real-time hybrid testing", J. Eng. Mech., ASCE, 143(7), 04017029. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001235.
  39. Vaiana, N., Marmo, F., Sessa, S. and Rosati, L. (2020), "Modeling of the hysteretic behavior of wire rope isolators using a novel rate-independent model", Nonlinear Dynamics of Structures, Systems and Devices: Proceedings of the First International Nonlinear Dynamics Conference (NODYCON 2019), I, 309-317
  40. Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "An alpha modification of Newmark's method", Int. J. Numer. Meth. Eng., 15, 1562-1566. https://doi.org/10.1002/nme.1620151011.