• Title/Summary/Keyword: ZVS switching

Search Result 615, Processing Time 0.022 seconds

Feasibility Study of Distributed Auxiliary Resonant Commutation Snubber Linked Three Phase Voltage Source ZVS Inverter with Digital Servo Control Implementation

  • Hiraki, E.;Hattori, H.;Nakaoka, M.;Horiuchi, T.;Sugawara, Y.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.341-345
    • /
    • 1998
  • This paper presents performance and loss analysis of Auxiliary Resonant Commutation Snubber-linked (ARCS) three phase voltage source soft switching inverter which is operated under a condition of Zero Voltage Switching (ZVS). The system performances of this ARCS soft switching inverter which is controlled on optimal type I digital servo scheme are illustrated and evaluated on the basis of experimental results.

  • PDF

Improved Zero Voltage and Zero Current Switching Full Bridge PWM Converter with Active Clamp

  • Baek, J.W.;Cho, J.G.;Jeong, C.Y.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.687-693
    • /
    • 1998
  • An improved zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter is proposed to solve the problems of the previously presented ZVACS-FB-PWM converter with secondary active clamp such as narrow ZVS range of leading-leg switches [6]. By adding an auxiliary inductor in between the leading-leg and separated input source voltages, the ZVS of leading leg switches can be extended to the whole line and load ranges, which eliminates unwanted hard switching of clamp switch and simplifies its control. The principle of operation is explained and analyzed. The features and design considerations of the proposed converter are also illustrated and verified on a 3 kW, 100 KHz IGBT based experimental circuit.

  • PDF

A Noval High Efficiency Grid Connected 1kW PCS for Fuel Cell (새로운 고효율 계통연계 1kW 연료전지용 PCS)

  • Kim, Tae-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.417-422
    • /
    • 2008
  • In this paper, a novel DC/DC low-voltage high-current converter circuit is proposed to improve the efficiency of power converter used in the grid-connected fuel-cell generator system. We proposed a novel high efficiency grid-connected power conditioning system for RPG fuel cell. On the result of that, the loss of system was decreased rapidly by driving stack within the condition of maximum efficiency. The peak currents of the current-type inductor and the transformer's coil are reduced by synchronizing switching frequency of Buck-type converter is increased twice as the Push-Pull converter's switching frequency. The novel structure of DC/DC converter is able to realize ZVS-ZCS in fuel-cell system is proposed. The proposed switching component of Push-Pull converter has the ZVS and ZCS function by using the circuit of new passive clamp.

A High Power Factor and High Efficiency Three Phase Boost Converter using auxiliary Partial Resonant circuit (보조 부분 공진 회로를 이용한 고역률 고효율 삼상 부스트 컨버터)

  • Suh, Ki-Young;Kwon, Soon-Kurl;Lee, Hyun-Woo;Kim, Young-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.212-218
    • /
    • 1999
  • A new partial resonant three phase boost converter with high power factor and high efficiency is proposed. The proposed boost converter is constructed by using a resonant network in parallel with the swithch of the conventional boost converter. The devices are switched at zero voltage or zero current eliminating the switching loss. A new auxiliary partial resonant boost converter achieves zero-voltage switching(ZVS) or zero-current switching(ZCS) for all switch devices without increasing their voltage and current stresses.

  • PDF

Analysis and Implementation of a DC-DC Converter with an Active Snubber

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.779-786
    • /
    • 2011
  • This paper presents a soft switching converter to achieve the functions of zero voltage switching (ZVS) turn-on for the power switches and dc voltage step-up. Two circuit modules are connected in parallel in order to achieve load current sharing and to reduce the size of the transformer core. An active snubber is connected between two transformers in order to absorb the energy stored in the leakage and magnetizing inductances and to limit the voltage stresses across the switches. During the commutation stage of the two complementary switches, the output capacitance of the two switches and the leakage inductance of the transformers are resonant. Thus, the power switches can be turned on under ZVS. No output filter inductor is used in the proposed converter and the voltage stresses of the output diodes is clamped to the output voltage. The circuit configuration, the operation principles and the design considerations are presented. Finally, laboratory experiments with a 340W prototype, verifying the effectiveness of the proposed converter, are described.

A Characteristic Estimation of Current fed Push Pull Type High Frequency Resonant DC-DC Converter with Active Clamp Circuits (능동클램프회로를 갖는 전류공급 Push-Pull형 고주파공진 DC-DC 컨버터의 특성평가)

  • 오경섭;남승식;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.517-524
    • /
    • 2004
  • In this paper, a novel zero-voltage-switching(ZVS) resonant DC-DC converter is proposed. It is composed of two symmetrical active-clamped circuits, the converter can be achieve ZVS in each switches. Also, active clamp capacitor ratios($\alpha$) of proposed circuit can be reduce a peak stress of switching voltage for each main switch. Simulation results using Pspice 9.2 ver and $C^{++}$ characteristic analysis show a provement for the validity of theoretical analysis. The analysis of the proposed Current-Fed Push Pull type DC-DC converter is generally described by using normalized parameter, and achieved an evaluated characteristic values which is needed to design a circuit. We confirm a rightfulness theoretical analysis by comparing a theoretical values and experimental values obtained from experiment using MOSFET as switching devices.

Fuzzy Controlled ZVS Asymmetrical PWM Full-bridge DC-DC Converter for Constant load High Power Applications

  • Marikkannan., A;Manikandan., B.V
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1235-1244
    • /
    • 2017
  • This paper proposes a fuzzy logic controlled new topology of high voltage gain zero voltage switching (ZVS) asymmetrical PWM full-bridge DC-DC boost converter for constant load and high power applications. The APWM full-bridge stage provides high voltage gain and soft-switching characteristics increase the efficiency and reduce the switching losses. Fuzzy logic controller (FLC) improves the performance and dynamic characteristics of the proposed converter. A comparison with a classical proportional-integral (PI) controller demonstrates the high performances of the proposed technique in terms of effective output voltage regulation under different operating conditions. Simulation is done by integrating two different simulation platforms $PSIM^{(R)}$ and $Matlab^{(R)}/Simulink^{(R)}$ by using SimCoupler tool of $PSIM^{(R)}$. Experimental results using 120W load have been provided to validate the results.

A New High Efficiency ZVZCS Bidirectional DC/DC Converter for HEV 42V Power Systems

  • Kim Chong-Eun;Han Sang-Kyoo;Park Ki-Bum;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.271-278
    • /
    • 2006
  • A new high efficiency zero-voltage and zero-current switching (ZVZCS) bidirectional DC/DC converter is proposed in this paper. The proposed converter consists of two symmetric half-bridge cells as the input and output stages. MOSFETs of input stage are turned-on in ZVS condition, and those of output stage are turned-off in ZCS condition. In addition, MOSFETs of input and output stages have low voltage stresses clamped to input and output voltage, respectively. Therefore, the proposed converter has high efficiency and high power density. The operational principles are analyzed and the advantages of the proposed converter are described. The 300W prototype of the proposed converter is implemented for 42V hybrid electric vehicle (HEV) application in order to verify the operational principles and advantages.

A New Control Scheme for a Class-D Inverter with Induction Heating Jar Application by Constant Switching Frequency

  • Choi Won-Suk;Park Nam-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.272-281
    • /
    • 2005
  • In this paper, a simple power control scheme for a constant frequency Class-D inverter with a variable duty cycle is proposed. It is more suitable and acceptable for high- frequency induction heating (IH) jar applications. The proposed control scheme has the advantages of not only wide power regulation range but also ease of control output power. Also it can achieve a stable and efficient Zero-Voltage-Switching (ZVS) in a whole load range. The control principles of the proposed method are described in detail and its validity is verified through simulated and experimental results on 42.8kHz IGBT for induction heating rated on 1.6kW with constant frequency variable power.

A 10kW Hybrid Converter for the Electric Vehicle Charge Application (전기자동차 충전기용 10kW 하이브리드 컨버터)

  • Tran, Dai-Duong;Yu, Sun-Ho;Vu, Hai-Nam;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.319-320
    • /
    • 2015
  • A hybrid converter for the on-board charger consisting of a soft switching full bridge (SSFB) and a half bridge (HB) LLC resonant converter is proposed. The proposed topology adopts an additional switch and a diode at the secondary side of SSFB converter to guarantee the wide ZVS range of primary side switches and to eliminate the circulating current. The output voltage is regulated by controlling the duty cycle of secondary side switch. The effectiveness of the proposed converter was experimentally verified using a 10-kW prototype circuit. The experimental results show 96.8% peak efficiency.

  • PDF