• 제목/요약/키워드: You-Only-Look-Once algorithm

검색결과 47건 처리시간 0.025초

YOLO 환경에서 손가락 방향감지 알고리즘 설계 및 구현 (Design and Implementation of Finger Direction Detection Algorithm in YOLO Environment)

  • 이철민;민텟따;이동명
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.28-30
    • /
    • 2021
  • 본 논문에서는 YOLO (You Only Look Once) 라이브러리를 이용하여 사용자의 손가락 방향을 감지하는 알고리즘을 제안하였다. 제안한 손가락 방향감지 알고리즘의 처리단계는 학습 데이터 관리단계, 데이터 학습 단계, 그리고 손가락 방향감지 단계로 구성된다. 실험 결과, 카메라와 손가락간의 거리는 손가락 방향 감지 정확도에 매우 큰 영향을 미침을 알 수 있었다. 차후 제안 알고리즘의 정확도 및 신뢰도의 개선 후에 이 기능을 커틀봇3 (Turtlebot3)에 적용 할 예정이다.

  • PDF

시각 장애우를 위한 YOLO와 OCR 알고리즘 기반의 유통기한 자동 알림 시스템 (Automatic Notification System of Expiration Date Based on YOLO and OCR algorithm for Blind Person)

  • 김민수;문미경;한창희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.697-698
    • /
    • 2021
  • 본 논문에서는 시각 장애우의 식품 안전성 증진을 위해 광학 문자 인식 (optical character recognition, OCR) 및 실시간 객체 인식 (you only look once, YOLO) 알고리즘에 기반한 식품의 유통기한 자동 알림 시스템을 제안한다. 제안하는 시스템은 1) 스마트폰 카메라를 통해 실시간으로 입력되는 영상에서 YOLO 알고리즘을 활용하여 유통기한으로 예측되는 이미지 영역을 검출하고, 2) 검출된 영역에서 OCR 알고리즘을 활용하여 유통기한 데이터를 추출하며, 3) 최종 추출된 유통기한 데이터를 음성으로 변환하여 시각 장애우에게 전달한다. 개발된 시스템은 유통기한 정보를 추출해서 사용자에게 전달하기까지 평균 약 7초 이내의 빠른 응답 속도를 보였으며, 62.8%의 객체 인식 정확도와 93.6%의 문자 인식 정확도를 보였다. 이러한 결과들은 제안하는 시스템을 시각 장애우들이 실용적으로 활용할 수 있다는 가능성을 보여준다.

  • PDF

손가락 방향 감지를 위한 이미지 데이터셋 설계 및 구축 (Design and Construction of Image Dataset for Finger Direction Detection)

  • 강기덕;이동명
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.31-33
    • /
    • 2021
  • 본 논문에서는 욜로(You Only Look Once, YOLO) 기반의 손가락 방향 감지 알고리즘을 이용하여 손가락 방향 감지 정확도 향상을 위한 데이터셋을 설계 및 구축하였다. 손가락 방향 감지 성능 향상을 위해 약 200개의 손가락 이미지 데이터셋을 학습하였으며, 손바닥의 각도에 따른 손가락 방향 감지 정확도를 확인하기 위해 서로 다른 각도의 비교군을 각각 50개씩 구성하여 실험하였다. 실험결과, 수평기준 90°도에 근접한 방향에 위치한 손가락 방향 감지 정확도는 다른 각도의 경우보다 더 높게 나옴을 확인하였다.

  • PDF

플라스틱 재활용을 위한 YOLO기반의 자동 분류시스템 (YOLO Based Automatic Sorting System for Plastic Recycling)

  • 김용준;조태욱;박형근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.382-384
    • /
    • 2021
  • 본 연구에서는 실시간 물체 인식 알고리즘인 YOLO (You Only Look Once)를 이용하여 플라스틱의 종류를 자동으로 분류하는 시스템을 구현하였다. 시스템은 Nvidia 사에서 만든 딥러닝, 컴퓨터비전용 소형 컴퓨터인 Jetson Nano에 YOLO를 이용하여 플라스틱 분리배출 마크를 인식할 수 있도록 훈련시킨 모델을 탑재하여 구성하였다. 웹캠을 이용해서 플라스틱 쓰레기의 분리배출 마크를 PET, HDPE, PP 세 종류로 인식하고 모터를 조절하여 종류에 따라 분류될 수 있도록 하였다. 이 자동 분류기를 구현함으로 써 사람이 직접 플라스틱 분리배출 마크를 확인하여 분리배출하는 수고를 덜어줄 수 있다는 점에서 편의성을 가지며 정확한 분리수거를 통해 재활용의 효율성을 높일 수 있다.

  • PDF

경량화된 임베디드 시스템에서 의미론적인 픽셀 분할 마스킹을 이용한 효율적인 영상 객체 인식 기법 (Efficient Object Recognition by Masking Semantic Pixel Difference Region of Vision Snapshot for Lightweight Embedded Systems)

  • 윤희지;박대진
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.813-826
    • /
    • 2022
  • 카메라를 이용한 영상 처리와 그에 따른 인공지능 기술의 발달로 다양한 분야의 기술이 발전하기 시작했다. 하지만 보드가 가벼울수록 연산이 많이 필요한 영상 처리 알고리즘을 구현하기 힘들다. 본 논문에서는 경량 임베디드 보드에서 물체 인식 알고리즘을 위한 딥러닝을 사용하는 방법을 제안한다. 비교적 적은 양의 계산으로 segmentation을 처리하는 딥러닝 알고리즘을 사용하여 ROI(Region of Interest)를 결정할 수 있다. 영역을 마스킹한 후, 더 정확한 딥러닝 알고리즘을 사용해 물체 감지를 할 수 있다. Python에서 입력 이미지를 처리하기 위해 OpenCV를 사용했고 ENet과 YOLO(You Only Look Once)를 사용하여 이미지를 처리했다. 이 알고리즘을 실행함으로써 평균 오차가 절반으로 감소해 정확한 객체 검출을 처리할 수 있고 경량 임베디드 보드에서 실시간으로 객체 인식을 실행할 수 있다. 이 연구는 자율주행과 IoT에서 저가격 경량화된 응용에 활용될 수 있을 것으로 기대된다.

Corroded and loosened bolt detection of steel bolted joints based on improved you only look once network and line segment detector

  • Youhao Ni;Jianxiao Mao;Hao Wang;Yuguang Fu;Zhuo Xi
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.23-35
    • /
    • 2023
  • Steel bolted joint is an important part of steel structure, and its damage directly affects the bearing capacity and durability of steel structure. Currently, the existing research mainly focuses on the identification of corroded bolts and corroded bolts respectively, and there are few studies on multiple states. A detection framework of corroded and loosened bolts is proposed in this study, and the innovations can be summarized as follows: (i) Vision Transformer (ViT) is introduced to replace the third and fourth C3 module of you-only-look-once version 5s (YOLOv5s) algorithm, which increases the attention weights of feature channels and the feature extraction capability. (ii) Three states of the steel bolts are considered, including corroded bolt, bolt missing and clean bolt. (iii) Line segment detector (LSD) is introduced for bolt rotation angle calculation, which realizes bolt looseness detection. The improved YOLOv5s model was validated on the dataset, and the mean average precision (mAP) was increased from 0.902 to 0.952. In terms of a lab-scale joint, the performance of the LSD algorithm and the Hough transform was compared from different perspective angles. The error value of bolt loosening angle of the LSD algorithm is controlled within 1.09%, less than 8.91% of the Hough transform. Furthermore, the proposed framework was applied to fullscale joints of a steel bridge in China. Synthetic images of loosened bolts were successfully identified and the multiple states were well detected. Therefore, the proposed framework can be alternative of monitoring steel bolted joints for management department.

YOLO 네트워크를 활용한 전이학습 기반 객체 탐지 알고리즘 (Transfer Learning-based Object Detection Algorithm Using YOLO Network)

  • 이동구;선영규;김수현;심이삭;이계산;송명남;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.219-223
    • /
    • 2020
  • 딥 러닝 기반 객체 탐지 및 영상처리 분야에서 모델의 인식률과 정확도를 보장하기 위해 다량의 데이터 확보는 필수적이다. 본 논문에서는 학습데이터가 적은 경우에도 인공지능 모델의 높은 성능을 도출하기 위해 전이학습 기반 객체탐지 알고리즘을 제안한다. 본 논문에서는 객체탐지를 위해 사전 학습된 Resnet-50 네트워크와 YOLO(You Only Look Once) 네트워크를 결합한 전이학습 네트워크를 구성하였다. 구성된 전이학습 네트워크는 Leeds Sports Pose 데이터셋의 일부를 활용하여 이미지에서 가장 넓은 영역을 차지하고 있는 사람을 탐지하는 네트워크로 학습을 진행하였다. 실험결과는 탐지율 84%, 탐지 정확도 97%를 기록하였다.

SHOMY: Detection of Small Hazardous Objects using the You Only Look Once Algorithm

  • Kim, Eunchan;Lee, Jinyoung;Jo, Hyunjik;Na, Kwangtek;Moon, Eunsook;Gweon, Gahgene;Yoo, Byungjoon;Kyung, Yeunwoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2688-2703
    • /
    • 2022
  • Research on the advanced detection of harmful objects in airport cargo for passenger safety against terrorism has increased recently. However, because associated studies are primarily focused on the detection of relatively large objects, research on the detection of small objects is lacking, and the detection performance for small objects has remained considerably low. Here, we verified the limitations of existing research on object detection and developed a new model called the Small Hazardous Object detection enhanced and reconstructed Model based on the You Only Look Once version 5 (YOLOv5) algorithm to overcome these limitations. We also examined the performance of the proposed model through different experiments based on YOLOv5, a recently launched object detection model. The detection performance of our model was found to be enhanced by 0.3 in terms of the mean average precision (mAP) index and 1.1 in terms of mAP (.5:.95) with respect to the YOLOv5 model. The proposed model is especially useful for the detection of small objects of different types in overlapping environments where objects of different sizes are densely packed. The contributions of the study are reconstructed layers for the Small Hazardous Object detection enhanced and reconstructed Model based on YOLOv5 and the non-requirement of data preprocessing for immediate industrial application without any performance degradation.

스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델 (Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems)

  • 김도영;장성진;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.469-472
    • /
    • 2022
  • 최근 지능형 교통 시스템의 발전에 따라 딥러닝을 기술을 적용한 다양한 기술들이 활용되고 있다. 도로를 주행하는 불법 차량 및 범죄 차량 단속을 위해서는 차량 종류를 정확히 판별할 수 있는 차종 분류 시스템이 필요하다. 본 연구는 YOLO(You Only Look Once)를 이용하여 이동식 차량 단속 시스템에 최적화된 차종 분류 시스템을 제안한다. 제안 시스템은 차량을 승용차, 경·소·중형 승합차, 대형 승합차, 화물차, 이륜차, 특수차, 건설기계, 7가지 클래스로 구분하여 탐지하기 위해 단일 단계 방식의 객체 탐지 알고리즘 YOLOv5를 사용한다. 인공지능 기술개발을 위하여 한국과학기술연구원에서 구축한 약 5천 장의 국내 차량 이미지 데이터를 학습 데이터로 사용하였다. 한 대의 카메라로 정면과 측면 각도를 모두 인식할 수 있는 차종 분류 알고리즘을 적용한 지정차로제 단속 시스템을 제안하고자 한다.

  • PDF

A Research on Cylindrical Pill Bottle Recognition with YOLOv8 and ORB

  • Dae-Hyun Kim;Hyo Hyun Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.13-20
    • /
    • 2024
  • 본 논문은 영상에서 특정 원통형 약통을 식별할 수 있는 모델 이미지 생성 방식을 제시하고 데이터 수집에 대한 기술을 연구한다. 기존 연구들은 객체 인식과 특정 객체 식별이 분리되어 있어 이미지 스티칭(image stitching) 자동화에 적용하기 어려웠으며, 좌표 기반 이미지 추출 방식이 이미지 스티칭 과정에서 객체 영역 외의 정보도 모델 이미지에 포함시키는 문제를 갖고 있었다. 이를 해결하기 위해 본 논문은 최근에 출시된 YOLOv8(You Only Look Once)의 세그멘테이션(segmentation)기법을 수직축 회전하는 약통 영상에 적용하고 특징점 매칭 알고리즘인 ORB(Oriented FAST and Rotated BRIEF)를 활용하여 모델 이미지 생성을 자동화하였다. 연구 결과, 세그멘테이션 기법을 적용할 경우 특정 약통 식별시 인식률이 향상되었으며 특징점 매칭 알고리즘으로 생성된 모델 이미지는 특정 악통을 정확하게 식별해 낼 수 있었다.