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Abstract 

 
Research on the advanced detection of harmful objects in airport cargo for passenger safety 
against terrorism has increased recently. However, because associated studies are primarily 
focused on the detection of relatively large objects, research on the detection of small objects 
is lacking, and the detection performance for small objects has remained considerably low. 
Here, we verified the limitations of existing research on object detection and developed a new 
model called the Small Hazardous Object detection enhanced and reconstructed Model based 
on the You Only Look Once version 5 (YOLOv5) algorithm to overcome these limitations. 
We also examined the performance of the proposed model through different experiments based 
on YOLOv5, a recently launched object detection model. The detection performance of our 
model was found to be enhanced by 0.3 in terms of the mean average precision (mAP) index 
and 1.1 in terms of mAP (.5:.95) with respect to the YOLOv5 model. The proposed model is 
especially useful for the detection of small objects of different types in overlapping 
environments where objects of different sizes are densely packed. The contributions of the 
study are reconstructed layers for the Small Hazardous Object detection enhanced and 
reconstructed Model based on YOLOv5 and the non-requirement of data preprocessing for 
immediate industrial application without any performance degradation. 
 
Keywords:  Computer vision, detection of hazardous items, small-object detection, YOLO, 
air transport, security industries. 
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1. Introduction 

Over several decades, efforts have been underway to improve the security levels of passenger 
and cargo transport [1, 2]. With the increasing risk of air transport-related terrorism, especially 
after the September 11 attacks in 2001 [3], the detection of prohibited objects, including 
explosives, via X-ray scans of personal baggage has become even more important [2, 4, 5]. 
Formerly, object detection via X-ray imaging depended heavily on human vision, and 
therefore had high fallibility and limitations in discrimination [6, 7]. Nowadays, cabin baggage 
inspection systems have gradually advanced using computer vision technology. Furthermore, 
with the development of artificial intelligence (AI), a sophisticated baggage inspection system 
has been introduced to improve the detection performed by security personnel. With this new 
technology, the accuracy and speed of baggage inspection have been gradually enhanced [8, 
9]. 

However, despite recent advancements, some published studies on cabin baggage 
inspection have revealed different problems in automated object detection via X-ray scans. 
This technology is either limited to supporting security personnel in the field [6–8] or is slow 
as it performs two or more object detection processes [10, 11]. Furthermore, the technology 
often fails to detect relatively small hazardous objects because it has been devised with a focus 
on recognizing large objects linked to explosions and killings [12, 13]. Therefore, we to 
focused on resolving this shortcoming to recognize and detect small hazardous objects.  

Herein, we first verify the limitations of existing object detection and detection models 
through a literature review of baggage inspection in Section 2. Although it is common to 
oversample or manipulate target labels to enhance performance [14–16], the rather low 
performance of these methods when implemented on actual systems is continuously 
highlighted. In Section 3, we present our model development process that does not require any 
data transformation, and our new model that employs this process—called the Small 
Hazardous Object detection enhanced and reconstructed Model based on YOLOv5 (SHOMY). 
In Section 4, we compare SHOMY and the existing YOLOv5 model, and in Section 5 state 
the implications of the study and discuss future research directions. The main contributions of 
this study are 1) reconstructed layers for SHOMY based on YOLOv5, 2) elimination of data 
preprocessing for immediate industrial application without performance degradation, and 3) 
small-object detection in overlapping environments regardless of the field. 

2. Literature Review 

2.1 Development of Object Detection Technology 
Object detection is the process of showing an object’s location for verification within an image, 
and automatically categorizing its type [8, 9]. Object detection algorithms can be categorized 
into two types: two-stage detector algorithms, which perform region proposal and object 
classification separately, and one-stage detector algorithms, which perform these two 
processes concurrently [10]. The former can be transformed into the latter with greatly 
enhanced speeds and lower calculation costs. The most representative algorithms of the two-
stage detector type, listed in order of increasing speed, are the region-based convolutional 
neural network (R-CNN), fast R-CNN, and faster R-CNN. In detail, two-stage detector 
algorithms propose a region of interest where the object for detection might be located, extract 
the object features, and perform learning for the marking and categorization of the bounding 
box of the object. Contrastingly, one-stage detectors can be categorized into You Only Look 
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Once (YOLO) and single-shot multibox detector (SSD) algorithms. As can be inferred from 
its name, a one-stage detector performs proposal and categorization of the bounding box 
simultaneously, which saves time and reduces the cost in calculation and inference.  

For two-stage detectors, the calculation speed must be enhanced because calculation and 
inference are performed in two stages at the beginning of object detection. However, although 
the development of one-stage object detection has resulted in enhanced speed, its relatively 
low performance is a downside. Therefore, researchers have tried to improve its performance. 
To detect small objects using the YOLOv2 algorithm, the early altered model of YOLO, the 
receptive field was expanded to apply an altered characteristic extraction model (backbone) 
concatenating a convolution layer, which can include more region information, and a general 
convolution layer to achieve enhanced performance compared to previous models. Case 
studies of one-stage detectors based on the YOLO model have reported that they have object 
detection performance on par with those of two-stage detectors [11]. However, the ability of 
one-stage detectors to accurately detect some objects, particularly small objects, remains 
limited [14–16].  

We considered the characteristics of real-time detection of target objects through 
aeronautical X-ray scans and inferred that slow two-stage detectors are unfit for baggage 
search and detection. Model development and research on YOLO [12, 13], the fastest network 
among one-stage detectors, were then performed. We modified YOLOv5, the latest YOLO 
model, and developed SHOMY, a new model with enhanced performance. 

2.1.1 Research on Small-Object Detection 
YOLO is relatively weak at detecting small objects owing to its high detection speed [12], and 
therefore studies are continuously being conducted in the aeronautical field to enhance the 
detection of small objects that are difficult to identify with the naked eye. Liu et al. [13] 
developed a model that detects automobiles and people from a video of the ground filmed by 
an unmanned airplane. A generative adversarial network has been utilized for data 
augmentation to develop a network that produces a high-resolution video from a low-
resolution satellite-filmed video [14]. Object detection and model learning were performed 
simultaneously, leading to enhanced detection of small objects. However, despite these efforts, 
prior research on the detection of small objects failed to maintain the performance or suggest 
enhancements for datasets that include objects of different sizes. 

Owing to the difficulties in analyzing large datasets and in securing proper data labeling, 
even prior research on X-ray object detection failed to result in uniform performances for the 
detection of small, medium, and large objects. Therefore, studies on the topic are scarce. Lee 
and Cho [17] used the airport baggage X-ray data disclosed and provided by the Korea 
National Information Society Agency, which is the same dataset used in this study. They 
reported the detection of prohibited objects in baggage based on baggage images taken by X-
ray scanners. The Xception algorithm, a lightening model in which input data are received to 
reduce the number of channels through a 1 × 1 convolution product and are made to go through 
a 3 × 3 convolution product for individual output channel, was used. A detection and 
categorization model for 12 prohibited objects was then developed, which demonstrated a high 
performance based on the F-1 score. An experiment to detect and categorize large hazardous 
items and single items from a single image was then conducted. The model exhibited a 
generally good performance in the application of the latest exponentially developed image 
detection algorithm. However, only a fraction of the numerous types of items that must be 
detected in the field were used, and thus there were limitations in applying the model to an 
actual environment in which objects of two or more classes must be detected. However, a 
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dataset of X-ray images of six prohibited items was used, and performance comparison tests 
were conducted against models such as YOLOv2, R-CNN, and region-based fully CNN (R-
FCN) to determine the most outstanding model [18]. This study focused on large objects such 
as laptops and cameras and, thus, it failed to evaluate the detection performance of small 
objects and related situations. Similarly, the use of YOLOv3 solely in the detection of large, 
harmful, prohibited objects, such as razor blades, knives, and guns, among others was 
researched [19].  

To overcome the limitations of prior research, we conducted object detection wherein a 
total of 38 objects of different sizes applicable to an actual baggage search and videos were 
included in the detection efforts. Furthermore, the application of YOLOv5, the latest altered 
model of YOLO, as a one-stage detector was proposed. Although it is common to manipulate 
data to enhance the detection performance on small objects, as in [15, 16], data preprocessing 
would require considerable additional calculation costs and may have an adverse effect on 
learning. Therefore, we chose to approach the research question only with model tuning and 
without learning data alteration or manipulation, such as increasing the data and resolution of 
the input data, oversampling, copying and pasting small objects, and tiling. This ensures that 
the object detection performance is maintained in actual systems.  

3. Methodology 
This section examines the overall structure and outline of YOLOv5 and introduces the newly 
developed SHOMY model for enhanced small-object detection. Despite its high speed, the 
ability of the YOLO series to detect small objects is rather weak [12]. The architecture of 
SHOMY, which adds a neck layer to further expand the feature map and apply a new 
methodology to the detection layer, is described. The overall descriptions of baggage image 
data and sizes of objects, used for result comparison, are also defined. 

3.1 YOLOv5 Model 
YOLO realizes a one-stage detector model by defining object detection problems as regression 
problems. Available YOLO versions range from v1 to v5; among these, YOLOv5 was used in 
this study. Its object detection structure comprises a backbone layer for extracting traits, neck 
layer for aiding the detection of objects in different scales, and head layer for detecting objects. 
 

 
Fig. 1. Structure of cross-stage partial network (CSPNet). 
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Fig. 2. Architecture of path aggregation network (PANet). 

 
The first stage, referred to as a backbone layer–cross-state partial network, is for extracting 

the traits of images. In this stage, a cross-stage partial network (CSPNet), which is a model 
with an alleviated amount of calculation for use in a low-function computer environment or 
for real-time image detection, is used. Whereas the general CNN model requires large numbers 
of calculations with duplicate gradient problems, CSPNet integrates the feature map at the 
beginning and at the end to innovatively reduce the number of calculations. 

The CSPNet utilized by YOLOv5 is structured as shown in Fig. 1. The output value in the 
early base layer is divided into convolution ① and convolution ②. Subsequently, the value 
gained through convolution layers ① and ③, and that gained through convolution layer ② 
are merged. The value also passes through convolution layer ④, and consequently, the output 
value of the base layer is connected directly to the final convolution layer, serving as the 
gradient shortcut.  

The second stage, referred to as a neck layer–path aggregation network, responds to 
different scales of objects. Through modeling that utilizes a path aggregation network (PANet) 
[21] as its backbone, the feature pyramid network (FPN) resolves problems with information 
from the first layer not being reflected properly in the final prediction. 

In Fig. 2, layer ① is the FPN backbone and comprises considerably large networks such 
as ResNet-50. Therefore, low-level feature information must go through numerous layers to 
be conveyed to (a) a high level, wherein loss of information is inevitable. PANet is designed 
to fully convey the information even if the information is passed through the shortcut of (b) 
and through multiple convolution layers, with the addition of layer ③. 

The last stage, or the head layer, is used for predicting the possible locations of objects and 
utilizes the complete intersection over union (CIoU) loss proposed in [22]. CIoU has a high 
learning speed compared to those of IoU, generalized IoU (GIoU), and distance IoU (DIoU), 
which are often used for object detection loss rates and are useful in detecting small objects. 
 

                   CIoU Loss  =  𝑆𝑆(𝐵𝐵,𝐵𝐵𝑔𝑔𝑔𝑔) +  𝐷𝐷(𝐵𝐵,𝐵𝐵𝑔𝑔𝑔𝑔) +  𝑉𝑉 (𝐵𝐵,𝐵𝐵𝑔𝑔𝑔𝑔)              (1) 
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Fig. 3. Definition of D in CIoU. 

 
As shown in (1), CIoU comprises the surface area (S), distance (D), and aspect ratio (V) of 

two boxes (B: box coordinates predicted by the model, 𝐵𝐵𝑔𝑔𝑔𝑔: coordinates of the actual box 
(ground truth)). 
 

 𝑆𝑆  =  1 − 𝐼𝐼𝐼𝐼𝐼𝐼                   (2) 
 
S, defined in (2), is the loss of the overlapping area of the two boxes. 

 𝐷𝐷  =   𝜌𝜌
2 (𝑝𝑝,𝑝𝑝𝑔𝑔𝑔𝑔)
𝑐𝑐2

                    (3) 
The distance D of the box is calculated based on the diagonal distance (c) and the distance of 
the central points (d), as shown in Fig. 3. In (3), c is the diagonal distance, and ρ is the distance 
between central points. Therefore, if the two objects are close, D approaches zero, and the loss 
decreases. 
 

 𝑉𝑉  =   4
𝜋𝜋2

(arctan𝑤𝑤𝑔𝑔𝑔𝑔

ℎ𝑔𝑔𝑔𝑔
−  arctan𝑤𝑤

ℎ
)2        (4) 

 
Finally, V calculates the difference in the proportions of the widths (2) and heights (h) of the 
two boxes, as in (4), to determine whether the two boxes have similar forms. Ultimately, CIoU 
induces learning by maximizing the overlapping area between the two boxes, minimizing the 
distance between them, and maintaining a similar form simultaneously. 

 

        𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑ ∑ 1𝐵𝐵
𝑗𝑗=0

𝑆𝑆2
𝑖𝑖=0

𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖 [(𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖)2  +  (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2]    

     + 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑ ∑ 1𝐵𝐵
𝑗𝑗=0

𝑆𝑆2
𝑖𝑖=0

𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖 [(�𝑤𝑤𝑖𝑖  − �𝑤𝑤�𝑖𝑖)2  +  (�ℎ𝑖𝑖 − �ℎ�𝑖𝑖)2]      

       +  ∑ ∑ 1𝐵𝐵
𝑗𝑗=0

𝑆𝑆2
𝑖𝑖=0

𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖 (𝐶𝐶𝑖𝑖 − 𝐶̂𝐶𝑖𝑖)2       

     + 𝜆𝜆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∑ ∑ 1𝐵𝐵
𝑗𝑗=0

𝑆𝑆2
𝑖𝑖=0

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖 (𝐶𝐶𝑖𝑖 − 𝐶̂𝐶𝑖𝑖)2      

+∑ 1𝑆𝑆2
𝑖𝑖=0

𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖
∑ (𝑐𝑐∈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑖𝑖(𝑐𝑐) − 𝑝̂𝑝𝑖𝑖(𝑐𝑐))2         (5) 
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Fig. 4. Architecture of SHOMY. 
 

YOLO defines loss by separating cases wherein there are objects on the grid cell and 
wherein there are no objects on the grid cell. If (5) were to be labeled (a)–(e) from the top, (a) 
would be the mean squared error (MSE) for the central point coordinates (x,y) of the object 
when there is an object in the grid cell. Part (b) would be the MSE for the height (h) and width 
(w) of the object when there is an object in the grid cell. Here, root is used to decrease the scale 
difference between large and small objects. Parts (c) and (d) would be the confidence scores 
for when there is an object in the grid cell and for when there is no object in the grid cell, 
respectively. This is defined as P(object) × CIoU. Finally, (e) would be the loss value of the 
conditional probability for the class when there is an object in the grid cell.  

3.2 SHOMY: Performance Enhancement Model for Small-Object Detection 
As reported in prior studies, X-ray baggage detection differs between large and small objects. 
In addition, whereas the detection performance of large objects is now adequate to a certain 
degree, the detection rates for small objects, such as USB flash drives, bullets, and lighters, 
are relatively low. Scaled-YOLOv4 [23] adds detection layers to improve the probability of 
acquiring enhanced results compared with those of the basic model, for increasing the 
detection rates for such small objects. The backbone network of YOLOv5 finds the location 
and spatial information of objects, whereas the neck network finds the semantic information. 
Based on the characteristics of Scaled-YOLOv4 and YOLOv5, this study added a neck layer, 
N2, which produces a massive feature map, as shown in Fig. 4. This further expands the last 
feature map (upsample) and secures as much semantic information as possible. 

The added N2 is connected to B2 of the same scale in the backbone to help the network 
find the traits and spatial information of small objects. Meanwhile, the head is the final stage 
of object detection. As discussed, a stage dedicated to detecting small objects was added [23].  

As shown in Fig. 4, the detection layer D2, which utilizes an anchor box for small objects, 
was added to H3 of the head. The sizes of the boxes (5 × 7, 8 × 15, 17 × 12) are half of those 
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of three anchor boxes combined (10 × 13, 16 × 30, 33 × 23). As a result, regression learning 
is performed with a smaller anchor box in a space expanded even further to enable the 
detection of small objects such as USB flash drives (10 × 17).  

By adding N2 to the neck, a large feature map is produced, whereas by adding D2 to the 
produced feature map and utilizing a smaller anchor box, the detection of small objects is 
improved. The results of the proposed model are provided in Section 4.2. 

3.3 Computing Resources 
The experiments were conducted using an Nvidia RTX 3080 GPU, Intel i7-10700 2 CPU, and 
64 GB of RAM. 

3.4 Definition of Dataset and Object Size 
As mentioned, we utilized the image data of prohibited objects obtained by a scanner from 
Rapiscan and provided by the National Information Society Agency, South Korea. To build a 
system that detects target objects using X-ray for security searches at airports, ports, train 
stations, private companies, and public offices, a dataset having a considerable amount of data 
is necessary. 

The dataset provided 38 discernable target objects. Based on Microsoft Common Objects 
in Context (MS COCO), small, medium, and large objects were defined according to their 
surface areas, as outlined in Table 1. They were categorized into 5 small, 26 medium, and 7 
large objects. Among the small objects, USB flash drives are sensitive storage media linked 
closely to the leakage of confidential information, whereas bullets, nail clippers, batteries, and 
lighters are objects that must be detected for flight safety [24–26]. 
 
Table 1. Definition of object size (small, medium, large) and classification of target objects based on 

MS COCO standard. 

Size 
MS COCO 
Definition (Pixel) Classification of X-ray Target Objects (38 EA) 
Min. Max. 

small 1 × 1 32 × 32 USB, bullet, nail clippers, battery, lighter (5 EA) 

medium 32 × 32 96 × 96 

throwing knife, match, electronic cigarettes, electronic 
cigarettes (liquid), awl, thinner, SSD, screwdriver, Zippo oil, 
liquid, aerosol, knife, portable gas, supplementary battery, 
smart phone, HDD, alcohol, scissors, spanner, handcuffs, gun 
parts, solid fuel, pliers, chisel, gun, firecracker (26 EA) 

large 96 × 96 ∞ × ∞ hammer, tablet PC, laptop, saw, axe, bat, metal pipe (7 EA) 

 
Four types of data are provided according to their provision methods, as shown in Table 2. 

Because multiple target items for detection and general items are included together in actual 
images in the field, data types of Multiple & Categories and Multiple & Others were selected 
here. The former is a type of dataset that includes multiple target items for detection, other 
hazardous objects, and other general objects. The total number of distinct items for detection 
was 38, with the dataset having a total of 54,949 data points. Of these, 41,211 (75 %) were 
used for training, whereas the remaining 13,738 (25 %) were used for validation. Data were 
randomly extracted and produced from each item at an equal rate of 25 %. 
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Table 2. Types of X-ray baggage datasets. 
Type Details 

Single Default 1 target object only 

Single & Others 1 target object + other non-targeted objects 

Multiple & Categories multiple target objects + other target objects 

Multiple & Others multiple target objects + other non-targeted objects 

 

3.5 Measurement Indexes 
The basic indexes for measuring model performance in object detection are precision and 
recall. The former refers to the proportion of actual true values among the experimental values 
identified to be true, whereas the latter refers to the proportion of values identified to be true 
among the actual true values. They are defined in (6): 
 

      Precision  =  True Positive
True Positive + False Positive

 

                                Recall  =  True Positive
True Positive + False 𝑁𝑁𝑁𝑁𝑁𝑁ative

                           (6) 
 
Precision and recall are complementary. When recall is enhanced in object detection, 

precision is bound to decrease, and it is important to allow the model to learn such that the 
values of the two indexes are high. Therefore, the mean average precision (mAP) index, an 
average index for detection that accounts for both precision and recall, is generally used. 
Generally, mAP is measured based on IoU (intersection over union) = 0.5, which refers to the 
overlapping ratio of the predicted area of the box in which an object is placed to the actual 
area of the box (ground-truth bounding box), as shown in Fig. 5. In other words, the IoU is the 
area of overlap divided by the area of union. When the IoU is 0.5 or higher, mAP categorizes 
the predicted value as true [27]. 
 

 
Fig. 5. Calculation of IoU. 

 
Another index measured with mAP is mAP (.5:.95), which is the average value measured 

based on increasing 0.5 to 0.95 by intervals of 0.05 and is used as a more rigorous object 
detection performance index compared to mAP [27]. This study focuses on how detection 
performance on small objects is enhanced in terms of the two indexes. 
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4. Experimental Results 
This section presents the experimental results of enhancing the performance of detecting small 
objects from X-ray baggage videos. In particular, the experimental results of YOLOv5 and 
SHOMY are compared and analyzed with the definition of object size and classification of 
target objects described in Table 1.  

4.1 Application Results of YOLOv5 Basic Model 
Examining the results of the YOLOv5 basic model revealed the average overall performance 
to be mAP = 98.7 and mAP (.5:.95) = 87.8, as shown in Table 3. The detection performance 
on small objects was verified to be low compared with those on medium and large objects. In 
particular, the drop in the small-object detection performance is notably large in terms of mAP 
(.5:.95) with rigorous IoU settings. On the contrary, unlike in the YOLOv5 basic model, which 
performs learning based on an anchor box with a pre-designated size, an auto-anchor box uses 
the K-means algorithm to automatically produce an optimal anchor box in the box coordinate 
distribution of the dataset class. However, although learning to automatically produce 3–5 
auto-anchor boxes was performed, the performance was similar to or slightly lower than that 
of the basic model. Although analysis for the underlying causes may be necessary in the future, 
it is assumed that there was a failure to produce optimal groupings from the 38-object box 
coordinates. 
 

Table 3. Experimental results of YOLOv5 default and SHOMY with auto-anchor settings. 

 mAP% mAP(.5:.95)% 
All S M L All S M L 

YOLOv5 
Default 98.7 96.4 99.2 98.8 87.8 76.8 88.6 92.6 

/w Auto Anchor 
3 98.7 96.2 99.2 98.8 87.7 76.7 88.7 91.5 

/w Auto Anchor 
4 98.6 96.0 99.2 98.8 87.4 76.0 88.3 92.2 

/w Auto Anchor 
5 98.6 95.8 99.2 98.8 87.4 75.6 88.5 91.8 

SHOMY 
(N2+D2) 99.0 98.3 99.2 98.7 88.9 81.6 89.5 92.1 

/w Auto Anchor 
3 98.7 96.7 99.1 98.8 88.1 77.8 89.3 90.9 

/w Auto Anchor 
4 98.7 96.7 99.1 98.9 88.3 77.6 89.3 92.3 

/w Auto Anchor 
5 98.7 96.8 99.2 98.8 88.5 78.0 86.6 92.7 

 
(S: Small, M: Medium, L: Large; … : Yolov5, … : SHOMY).  

 
For each of the small items, the YOLOv5 basic model demonstrated lower performance for 
smaller sizes, as shown in Table 4. Section 4.2 discusses the ways in which the SHOMY 
model enhances object detection.  
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Table 4. Results of small-object detection for YOLOv5 default vs. SHOMY. 

 
USB 
drive 
(10 × 17) 

Bullet 
(15 × 25) 

Nail 
Clippers 
(18 × 34) 

Battery 
(20 × 40) 

Lighter 
(21 × 43) 

YOLOv5 
mAP% 92.0 96.3 99.5 95.6 98.5 

YOLOv5 
mAP(.5:.95)% 64.6 74.0 85.1 75.1 85.1 

SHOMY 
mAP% 
(vs. YOLOv5 Default) 

96.7 
(▲4.7) 

97.4 
(▲1.1) 

99.7 
(▲0.1) 

98.7 
(▲3.1) 

99.1 
(▲0.6) 

SHOMY 
mAP(.5:.95)% 
(vs. YOLOv5 Default) 

72.7 
(▲8.1) 

79.3 
(▲5.3) 

87.1 
(▲2.0) 

81.3 
(▲6.2) 

87.5 
(▲2.4) 

 
(… : Yolov5, … : SHOMY).  
 

Table 5. Experimental results of the SHOMY model. 

 mAP% mAP(.5:.95)% 

All S M L All S M L 

SHOMY 
(N2+D2) 99.0 98.3 99.2 98.7 88.9 81.6 89.5 92.1 

SHOMY 
 (N2) 98.8 96.9 99.2 98.8 88.1 77.3 88.9 92.8 

YOLOv5 Default 98.7 96.4 99.2 98.8 87.8 76.8 88.6 92.6 
(S: Small, M: Medium, L: Large). 
 

4.2 Results of Small-Object Detection Enhancement 
Examining the performance of SHOMY revealed the average overall performance to be mAP 
= 99.9 and mAP (.5:.95) = 88.9 (Table 5), which is an enhancement of 0.3 and 1.1, respectively, 
compared with those of YOLOv5. In particular, enhancements of 1.9 and 4.8 were observed 
for small objects. Simultaneously, the detection performance of medium-sized and large 
objects was maintained without significant reductions or, in some cases, even increased 
slightly. Even models without the detection layer D2 exhibited slight increases in performance 
compared with that of YOLOv5 but remained weak compared to SHOMY. This result verified 
that the addition of detection layer D2, dedicated to the detection of small objects, contributed 
greatly to enhancing the overall performance. Additionally, in learning, there were weight 
losses for each of the detection layers D2, D3, D4, and D5, as shown in Fig. 4. A weight of 4 
was allotted to D2, whereas those of 1, 0.3, and 0.1 were allotted to layers D3, D4, and D5, 
respectively, which are dedicated to detecting medium-sized and large objects. The purpose 
of attributing large losses to errors in the detection of small objects is to ensure that the models 
have strong learning abilities in detecting small objects. 

The USB drive, the smallest object analyzed in this study, had a size of 10 × 17. When the 
basic anchor box value was used, the size of the box was set higher than that of the object, 
eventually leading to a decreased learning ability. Anchor boxes optimized to the object sizes 
of the used data were therefore identified to be necessary. As a result, we used new anchor 
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boxes with dimensions of 5 × 7, 8 × 15, and 17 × 12, or half the size of the smallest anchor 
box of the YOLOv5 basic model. 

Table 3 shows that the performance of the newly developed SHOMY(N2+D2) model with 
the new anchor setting value was superior to that of the SHOMY model with the auto-anchor 
boxes. The decline in detection performance on small objects was especially significant when 
the auto-anchor settings were used. This result shows that in learning a dataset of small objects, 
manually setting anchor boxes according to the characteristics of these objects would be more 
effective. As shown in Table 4, SHOMY exhibited an enhanced performance for small-object 
detection compared with that of the YOLOv5 basic model. Notably, the mAP and mAP(.5:.95) 
indexes for the USB drive, the smallest object analyzed in this study, increased by 4.7 and 8.1 
to 96.7 and 72.7, respectively. Fig. 6 is an example of an inference by SHOMY showing its 
high performance in detecting objects of different sizes in an X-ray baggage image featuring 
multiple different objects. In this study, SHOMY was demonstrated to be capable of detecting 
small objects such as USB drives, lighters, and bullets.  

 

 
Fig. 6. Example of inference images by SHOMY model. 

 

5. Conclusion 
The object detection field is currently facing important challenges because existing studies are 
primarily focused exclusively on the detection of medium- and large-sized objects, resulting 
in low detection performance for small objects. However, the potential hazards of certain small 
baggage items cannot be ignored, as highlighted by incidents such as the relatively recent 
smartphone explosions and continuous industrial espionage cases using ultrasmall storage 
media, which have been reported in prior research. We therefore aimed to enhance the 
detection performance on small objects while maintaining the current detection performance 
levels of medium-sized and large objects.  

To this end, we developed the SHOMY model based on YOLOv5 for enhancing the 
detection performance on small objects in X-ray baggage videos. A comparative analysis was 
performed between the performances of the two models with different auto-anchors to verify 
the superior small-object detection performance of the newly developed model. To enhance 
the detection of small objects, a neck layer, N2, which further expands the last feature map by 
one stage (2×), was added. This feature map was then added to the early feature map of the 
backbone, to ensure the effectiveness of spatial and semantic information. A new detection 
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layer, D2, was also added to the N2-produced feature map, and an anchor box of very small 
size was created such that learning would specialize on small objects.  

Consequently, the small-object detection performance was enhanced compared with that 
of previous studies and the YOLOv5 model and a suitable detection performance of medium-
sized and large objects maintained. This has great academic significance in that this was not 
previously achieved in the field of object detection. In addition, prior studies were frequently 
performed using synthetic target data and oversampling. Thus, when the models were 
implemented on actual systems, the performance was greatly reduced compared with the 
reported performance. Therefore, the model was reconstructed only through tuning and the 
enhancement of the architecture without data manipulation, while producing an improved 
performance, which is of great significance.  

The necessity to detect small hazardous items in baggage checks at transport hubs such as 
airports, ports, and train stations is directly linked to the lives and safety of passengers and is 
expected to become more critical in the future. Terrorism is increasing, the methods involved 
are continuously becoming more complex, and the types of items used are becoming more 
diverse, leading to more hazards. In addition to the small items analyzed in this study, many 
other small and ultrasmall items that may be used for terrorism must be rapidly identified for 
detection and researched continuously. In addition to the model enhancement methods 
proposed herein, continuous efforts to overcome the limitations and achieve improved results, 
such as research on bold layer composition, the diversification of feature map information 
utilization, and the improvement of detection efficiency, are extremely necessary.  

We believe that SHOMY will contribute further to research dedicated to overcoming the 
limitations of one-stage object detectors. It is also expected that air transport and security 
industries, which require detection of various small objects in environments packed with 
objects of different sizes, can benefit from the development of an embedded system or 
application of an experimental method utilizing the results of this study. 
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