• Title/Summary/Keyword: Yolo-Cnn

검색결과 72건 처리시간 0.022초

객체 검출을 위한 CNN과 YOLO 성능 비교 실험 (Comparison of CNN and YOLO for Object Detection)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.85-92
    • /
    • 2020
  • Object detection plays a critical role in the field of computer vision, and various researches have rapidly increased along with applying convolutional neural network and its modified structures since 2012. There are representative object detection algorithms, which are convolutional neural networks and YOLO. This paper presents two representative algorithm series, based on CNN and YOLO which solves the problem of CNN bounding box. We compare the performance of algorithm series in terms of accuracy, speed and cost. Compared with the latest advanced solution, YOLO v3 achieves a good trade-off between speed and accuracy.

딥 러닝 및 칼만 필터를 이용한 객체 추적 방법 (Object Tracking Method using Deep Learning and Kalman Filter)

  • 김기철;손소희;김민섭;전진우;이인재;차지훈;최해철
    • 방송공학회논문지
    • /
    • 제24권3호
    • /
    • pp.495-505
    • /
    • 2019
  • 딥 러닝의 대표 알고리즘에는 영상 인식에 주로 사용되는 CNN(Convolutional Neural Networks), 음성인식 및 자연어 처리에 주로 사용되는 RNN(Recurrent Neural Networks) 등이 있다. 이 중 CNN은 데이터로부터 자동으로 특징을 학습하는 알고리즘으로 특징 맵을 생성하는 필터까지 학습할 수 있어 영상 인식 분야에서 우수한 성능을 보이면서 주류를 이루게 되었다. 이후, 객체 탐지 분야에서는 CNN의 성능을 향상하고자 R-CNN 등 다양한 알고리즘이 등장하였으며, 최근에는 검출 속도 향상을 위해 YOLO(You Only Look Once), SSD(Single Shot Multi-box Detector) 등의 알고리즘이 제안되고 있다. 하지만 이러한 딥러닝 기반 탐지 네트워크는 정지 영상에서 탐지의 성공 여부를 결정하기 때문에 동영상에서의 안정적인 객체 추적 및 탐지를 위해서는 별도의 추적 기능이 필요하다. 따라서 본 논문에서는 동영상에서의 객체 추적 및 탐지 성능 향상을 위해 딥 러닝 기반 탐지 네트워크에 칼만 필터를 결합한 방법을 제안한다. 탐지 네트워크는 실시간 처리가 가능한 YOLO v2를 이용하였으며, 실험 결과 제안한 방법은 기존 YOLO v2 네트워크에 비교하여 7.7%의 IoU 성능 향상 결과를 보였고 FHD 영상에서 20 fps의 처리 속도를 보였다.

Real-time Human Detection under Omni-dir ectional Camera based on CNN with Unified Detection and AGMM for Visual Surveillance

  • Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae;Cho, Seongwon
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1345-1360
    • /
    • 2016
  • In this paper, we propose a new real-time human detection under omni-directional cameras for visual surveillance purpose, based on CNN with unified detection and AGMM. Compared to CNN-based state-of-the-art object detection methods. YOLO model-based object detection method boasts of very fast object detection, but with less accuracy. The proposed method adapts the unified detecting CNN of YOLO model so as to be intensified by the additional foreground contextual information obtained from pre-stage AGMM. Increased computational time incurred by additional AGMM processing is compensated by speed-up gain obtained from utilizing 2-D input data consisting of grey-level image data and foreground context information instead of 3-D color input data. Through various experiments, it is shown that the proposed method performs better with respect to accuracy and more robust to environment changes than YOLO model-based human detection method, but with the similar processing speeds to that of YOLO model-based one. Thus, it can be successfully employed for embedded surveillance application.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

혼재된 환경에서의 효율적 로봇 파지를 위한 3차원 물체 인식 알고리즘 개발 (Development of an Efficient 3D Object Recognition Algorithm for Robotic Grasping in Cluttered Environments)

  • 송동운;이재봉;이승준
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.255-263
    • /
    • 2022
  • 3D object detection pipelines often incorporate RGB-based object detection methods such as YOLO, which detects the object classes and bounding boxes from the RGB image. However, in complex environments where objects are heavily cluttered, bounding box approaches may show degraded performance due to the overlapping bounding boxes. Mask based methods such as Mask R-CNN can handle such situation better thanks to their detailed object masks, but they require much longer time for data preparation compared to bounding box-based approaches. In this paper, we present a 3D object recognition pipeline which uses either the YOLO or Mask R-CNN real-time object detection algorithm, K-nearest clustering algorithm, mask reduction algorithm and finally Principal Component Analysis (PCA) alg orithm to efficiently detect 3D poses of objects in a complex environment. Furthermore, we also present an improved YOLO based 3D object detection algorithm that uses a prioritized heightmap clustering algorithm to handle overlapping bounding boxes. The suggested algorithms have successfully been used at the Artificial-Intelligence Robot Challenge (ARC) 2021 competition with excellent results.

시각장애인을 위한 딥러닝 기반 음료수 캔 인식 시스템 (A Beverage Can Recognition System Based on Deep Learning for the Visually Impaired)

  • 이찬비;심수현;김선희
    • 디지털산업정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.119-127
    • /
    • 2023
  • Recently, deep learning has been used in the development of various institutional devices and services to help the visually impaired people in their daily lives. This is because not only are there few products and facility guides written in braille, but less than 10% of the visually impaired can use braille. In this paper, we propose a system that recognizes beverage cans in real time and outputs the beverage can name with sound for the convenience of the visually impaired. Five commercially available beverage cans were selected, and a CNN model and a YOLO model were designed to recognize the beverage cans. After augmenting the image data, model training was performed. The accuracy of the proposed CNN model and YOLO model is 91.2% and 90.8%, respectively. For practical verification, a system was built by attaching a camera and speaker to a Raspberry Pi. In the system, the YOLO model was applied. It was confirmed that beverage cans were recognized and output as sound in real time in various environments.

mask R-CNN 기반의 철도선로 객체검출 및 분류에 관한 연구 (Research on railroad track object detection and classification based on mask R-CNN)

  • 이승신;최종원;오염덕
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.81-83
    • /
    • 2024
  • 본 논문에서는 mask R-CNN의 이미지 세그먼테이션(Image Segmentation) 기법을 이용하여 철도의 선로를 식별하고 분류하는 방법을 제안한다. mask R-CNN의 이미지 세그먼테이션은 바운딩 박스(Bounding Box)를 통해 이미지에서 객체를 식별하는 R-CNN 알고리즘과는 달리 픽셀 단위로 관심 있는 객체를 검출하고 분류하는 기법으로서 오브젝트 디텍션(Object Detection)보다 더욱 정교한 객체 식별이 가능하다. 본 연구에서는 Pascal VOC 형태의 고속철도 데이터 24,205셋의 데이터를 전처리하고 MS COCO 데이터셋으로 변환하여, MMDetection의 mask R-CNN을 통해 픽셀 단위로 철도선로를 식별하고 정상/불량 상태를 분류하는 연구를 수행하였다. 선행연구에서는 YOLO를 활용하여 Polygon형태의 좌표를 바운딩 박스로 분류하였는데, 본 연구에서는 mask R-CNN을 활용함으로써 철도 선로를 더욱 정교하게 식별하였으며 정상/불량의 상태 분류는 YOLO와 유사한 성능을 보였다.

  • PDF

YOLO 기반 외곽 사각형을 이용한 근접 돼지 분리 (Separation of Touching Pigs using YOLO-based Bounding Box)

  • 서지현;주미소;최윤창;이준희;정용화;박대희
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.77-86
    • /
    • 2018
  • Although separation of touching pigs in real-time is an important issue for a 24-h pig monitoring system, it is challenging to separate accurately the touching pigs in a crowded pig room. In this study, we propose a separation method for touching pigs using the information generated from Convolutional Neural Network(CNN). Especially, we apply one of the CNN-based object detection methods(i.e., You Look Only Once, YOLO) to solve the touching objects separation problem in an active manner. First, we evaluate and select the bounding boxes generated from YOLO, and then separate touching pigs by analyzing the relations between the selected bounding boxes. Our experimental results show that the proposed method is more effective than widely-used methods for separating touching pigs, in terms of both accuracy and execution time.

다중 신경망을 이용한 객체 탐지 효율성 개선방안 (Improving Efficiency of Object Detection using Multiple Neural Networks)

  • 박대흠;임종훈;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.154-157
    • /
    • 2022
  • 기존의 Tensorflow CNN 환경에서 Object 탐지 방식은 Tensorflow 자체적으로 Object 라벨링 작업과 탐지를 하는 방식이다. 그러나 현재 YOLO의 등장으로 이미지 객체 탐지의 효율성이 높아졌다. 그로 인하여 기존 신경망보다 더 많은 심층 레이어를 구축할 수 있으며 또한 이미지 객체 인식률을 높일 수 있다. 따라서 본 논문에서는 Darknet, YOLO를 기반으로 한 Object 탐지 시스템을 설계하고 기존에 사용하던 합성곱 신경망에 기반한 다중 레이어 구축과 학습을 수행함으로써 탐지능력과 속도를 비교, 분석하였다. 이로 인하여 본 논문에서는 Darknet의 학습을 효율적으로 이용하는 신경망 방법론을 제시하였다.

  • PDF

Vehicle Manufacturer Recognition using Deep Learning and Perspective Transformation

  • Ansari, Israfil;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.235-238
    • /
    • 2019
  • In real world object detection is an active research topic for understanding different objects from images. There are different models presented in past and had significant results. In this paper we are presenting vehicle logo detection using previous object detection models such as You only look once (YOLO) and Faster Region-based CNN (F-RCNN). Both the front and rear view of the vehicles were used for training and testing the proposed method. Along with deep learning an image pre-processing algorithm called perspective transformation is proposed for all the test images. Using perspective transformation, the top view images were transformed into front view images. This algorithm has higher detection rate as compared to raw images. Furthermore, YOLO model has better result as compare to F-RCNN model.