References
- Asifullah Khan, Anabia Sohail, Umme Zahoora, Aqsa Saeed Qureshi, "A Survey of the Recent Architectures of Deep Convolutional Neural Networks", Computer Vision and Pattern Recognition, Available at https://arxiv.org/ftp/arxiv/papers/1901/1901.06032.pdf [Accessed Mar. 13, 2020].
- Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation", IEEE Conference on Computer Vision and Pattern Recognition, pp.580-587, 2013.
- Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, Matti Pietikainen, "Deep Learning for Generic Object Detection: A Survey", International Journal of Computer Vision, vol.128, pp.261-318 2020. https://doi.org/10.1007/s11263-019-01247-4
- Kaimin He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition", European Conference on Computer Vision, Part 3, pp.346-361, 2014.
- Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhizi Feng, Rong Qu, "A Survey of Deep Learning-based Object Detection", IEEE Access, vol.7, pp.128837-128868, , 2019. https://doi.org/10.1109/ACCESS.2019.2939201
- David G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, vol.60, pp.91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
- Juan Du, "Understanding of Object Detection based on CNN Family and YOLO", Journal of Physics, Conference Series, vol.1004, issue.1, 2018.
- Tsung-Yi Lin, Priya Goyal, Roos Girshick, Kaiming He, Piotr Dollar, "Focal Loss for Dense Object Detection", International Conference on Computer Vision, pp.2999-3007, 2017.
- Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, "Speeded-Up Robust Features (SURF)", Computer Vision and Image Understanding, vol.110, issue.3, pp.346-359, 2008. https://doi.org/10.1016/j.cviu.2007.09.014
- Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", Communications of the ACM, vol.60, no.6, 2017.
- Yurong Yang, Huajun Gong, Xinhua Wang, Peng Sun, "Aerial Target Tracking Algorithm Based on Faster RCNN Combined with Frame Differencing", Aerospace, vol.4, no.32, 2017.
- Kwanghyun Kim, Sungjun Hong, Baehoon Choi and Euntai Kim, "Probabilistic Ship Detection and Classification using Deep Learning", Applied Sciences, vol.8, no.6, 2018.
- Rohith Gandhi, "R-CNN, Fast R-CNN, Faster R-CNN, YOLO - Object Detection Algorithms," 2018. Available at https://towardsdatascience.com/r-cnn-fast-r-cnn-fasterr-cnn-yolo-object-detection-algorithms-36d53571365e. [Accessed: Mar. 13, 2020].
- N. Dalal, B. Triggs, "Histograms of Oriented Gradients for Human Detection", IEEE Conference on Computer Vision and Pattern Recognition, pp.886-893, 2005.
- Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, "You Only Look Once: Unified, Real-time Object Detection", IEEE Conference on Computer Vision and Pattern Recognition, pp.779-788, 2015.
- Joseph Redmon, Ali Farhadi, "YOLO9000: Better, Faster, Stronger", IEEE Conference on Computer Vision and Pattern Recognition, pp.6517-6525, 2016.
- Joseph Redmon, Ali Farhadi, "YOLO v3: An Incremental Improvement", Computer Vision and Pattern Recognition, 2018. Available at https://pjreddie.com/media/files/papers/YOLOv3.pdf [Accessed Mar.13, 2020].
- Qi-Chao Mao, Hong-Mei Sun, Yan-Bo Liu, Rui-Sheng Jia, "Mini-YOLOv3: Real-time Object Detector for Embedded Applications", IEEE Access, vol.7, pp.133529-133538, 2019. https://doi.org/10.1109/ACCESS.2019.2941547
- Adrian Carrio, Sai Vemprala, Andres Ripoll, Srikanth Saripalli, Pascual Campoy, "Drone Detection using Depth Maps", International Conference on Intelligent Robots and Systems, pp.1032-1037, 2018.
- University of Oxford, "Pascal Visual Object Classes Homepage", Available at http://host.robots.ox.ac.uk/ pascal/VOC/index.html [Accessed: Mar.13, 2020].
- Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, "Speed/Accuracy Trade-offs for Modern Convolutional Object Detectors", IEEE Conference on Computer Vision and Pattern Recognition, pp.7310-7319, 2017.
- Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, Deva Ramanan, "Object Detection with Discriminatively Trained Part-based Models", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, 2010.
- Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, Stefan Carlsson, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", IEEE Conference on Computer Vision and Pattern Recognition, pp.512-519, 2014.
- Ross Girshick, "Fast R-CNN", Computer Vision and Pattern Recognition, pp.1440-1448, 2015.
- Hyochang Ahn, Yong-Hwan Lee, "A Research of CNNbased Object Detection for Multiple Object Tracking in Image", Journal of the Semiconductor and Display Technology, vol.18, no.3, 2019.
- Yong-Hwan Lee, Youngseop Kim, "Implementation of Object Feature Extraction within Image for Object Tracking", Journal of the Semiconductor and Display Technology, vol.17, no.3, 2018.
- Rahul Haridas, Jyothi RL, "Convolutional Neural Networks: A Comprehensive Survey", International Journal of Applied Engineering Research, vol.14, no.3, pp.780-789, 2019. https://doi.org/10.37622/IJAER/14.3.2019.780-789
- Akshi Kumar, Sukriti Verma, Himanshu Mangla, "A Survey of Deep Learning Techniques in Speed Recognition", International Conference on Advances in Computing, Communication Control and Networking, pp.179-185, 2018.
- M. Sornam, Kavitha Muthusubash, V. Vanitha, "A Survey on Image Classification and Activity Recognition using Deep Convolutional Neural Network Architecture", International Conference on Advanced Computing, pp.121-126, 2017.
- Azeddine Elhasouny, Florentin Smarandache, "Trends in deep convolutional neural networks architectures: a review", International Conference of Computer Science and Renewable Energies, pp.1-8, 2019.