• Title/Summary/Keyword: Yaw error

Search Result 122, Processing Time 0.035 seconds

Comparative Study on Active Yaw Control Algorithms (능동 요 제어 알고리즘의 비교 연구)

  • Choi, Hansoon;Lee, Hochul;Bang, Johyug
    • Journal of Wind Energy
    • /
    • v.10 no.3
    • /
    • pp.5-11
    • /
    • 2019
  • This paper suggests and compares two algorithms, a moving average filter method and a method developed by the National Renewable Energy Laboratory (NREL), to verify the yaw control algorithm characteristic to reduce yaw error for a wind turbine. A characteristic change for yaw movement in accordance with control parameter change that consists of each control method has been verified. Also, yaw simulations were performed using nacelle wind data measured from two areas with different turbulence intensities and the yaw movement data in each area was compared. These two algorithms and real data were compared by calculating mean absolute error (MSE) and the number of yawing (NY). As a result of the analysis, the MSE values were not significantly different between the two algorithms, but the algorithm proposed by the NREL was found to reduce yaw movement by up to 50 percent more than the moving average filter method.

Technique of Measuring Wind Speed and Direction by Using a Roll-rotating Three-Axis Ultrasonic Anemometer (II) (롤 회전하는 3축 초음파 풍속계를 활용한 풍향 풍속 측정기법(II))

  • Chang, Byeong Hee;Lee, Seunghoon;Kim, Yang won
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • In a previous study, a technique for measuring wind speed and direction by using a roll-rotating three-axis ultrasonic anemometer was proposed and verified by wind tunnel tests. In the tests, instead of a roll sensor, roll angle was trimmed to make no up flow in the transformed wind speeds. Verification was done in point of the residual error of the rotation effect treatment. In this study, roll angle was measured from the roll motor encoder and the transformed wind speed and direction on the test section axis were compared with the ones provided to the test section. As a result, up to yaw $20^{\circ}$ at a wind speed of 12 m/sec or over, the RMS error of wind speed was within the double of the ultrasonic anemometer error. But at yaw $30^{\circ}$, it was over the double of the ultrasonic anemometer error. Regardless of wind speed, at yaw $20^{\circ}$ and $30^{\circ}$, the direction error was within the double of the ultrasonic anemometer error. But at yaw $10^{\circ}$ or less, it was within the error of the ultrasonic anemometer itself. This is a very favorable characteristic to be used for wind turbine yaw control.

The Analysis of Motion Error in Scanning Type XY Stage (스캐닝 방식 XY 스테이지의 운동오차 분석)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF

Control for a Yaw Error Compensation System of Linear Motor Stage (리니어모터 스테이지 편요오차 보상장치 제어)

  • Lee, Seung-Hyun;Kang, Min-Sig
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.997-1005
    • /
    • 2008
  • Linear motor stage is a useful device in precision engineering field because of its simple power transmission mechanism and accurate positioning. Even though linear motor stage shows fine positioning accuracy along travel axis, geometric dependent errors which relay on machining and assembling accuracy should be addressed to increase total positioning performances. In this paper, we suggests a cost effective yaw error compensation servo-system which is mounted on platform of the stage and nullify travel position dependent yaw error. This paper also provides a method of designing a sliding mode control which is robust to existing friction disturbance and model uncertainties. The reachability condition of slinding mode control for the yaw error compensating servo-system has been established. From some experimental results by using an experimental set-up, the sliding mode control showed its effective in disturbance rejection and its performance was superior to conventional linear controls.

Assessment of Wind Turbine Load and Performance Effects by Yaw Control (풍력 터빈의 요 제어에 따른 하중 및 성능 영향성 평가)

  • Kim, Jin;Kim, Ji Yon;Koh, Jang Wook;Kweon, Ki Yeong
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • The wind generally includes turbulence characteristics in nature. So the yaw errors between wind turbine direction and wind direction occur due to turbulence fluctuation. The yaw errors affect the fatigue load of wind turbine system and power reduction. The components of turbulence intensity are different from those of each site where the wind turbines are installed. We studied that the fatigue load and power efficiency are improved by controlling yaw motions. In this study, we controlled the averaged yaw error time according to site conditions by turbulence intensity.

Yaw Angle Command Generation and Adaptive Fuzzy Control for Automatic Route Tracking of Ships (선박자동항로 추적을 위한 회두각 명령의 생성과 적응 퍼지제어)

  • 이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.199-208
    • /
    • 2001
  • In this paper, an automatic route tracking algorithm using the position variables and the yaw angle of a ship is suggested, Since most autopilot systems paly only a role of course-keeping by integrating the gyrocompass output, they cannot cope with position errors between the desired route and real route of the ship resulted from a drifting and disturbances such as wave, wind and currents during navigation. In order for autopilot systems to track the desired route, a method which can reduce such position errors is required and some algorithms have been proposed[1,2]While such were turned out effective methods, they have a shortage that the rudder control actions for reducing the position errors are occurred very frequently. In order to improve this problem it is necessary to convert that error into the corresponding yaw angle and necessary to treat only yaw angle control problem. To do this a command generation algorithm which converts the rudder angle command reducing the current position error into they yaw angle command is suggested. To control the ship under disturbances and nonlinearities of the ship dynamics, the adaptive fuzzy controller is developed. Finally, through computer simulations for two ship models, the effectiveness of the suggested method and the possibility of the automatic route tracking are assured.

  • PDF

Development of Tomotherapy couch device capable of yaw-directional correction (Yaw방향의 보정이 가능한 Tomotherapy couch device의 개발)

  • Chae, Moon Ki;Kwon, Dong Yeol;Sun, Jong Lyool;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.139-151
    • /
    • 2018
  • Objectives : A self-made "Tomotherapy couch device" capable of correcting the Yaw direction was fabricated and evaluated for its usefulness. Materials and Methods : "Tomotherapy couch device" capable of correcting the Yaw direction is made of rigid fibreboard with a flexural strength of $200kg/cm^2$. CBCT Image from Novalis Tx and Iso-Align Phantom from MED-TEC were used to evaluate the physical accuracy. The treatment plan was designed using Accuray $Precision^{TM}$ and In House Head and Phantom. Accuray $PrecisionART^{TM}$ and $Precision^{TM}$ was used to evaluate dose. Results : Evaluation results, the self-fabricated device accurately corrected the setup error, Target dose was within 95 %~107 % of all. In order to directly evaluate the OAR dose according to the Yaw change, the absolute dose was measured. As a result, when the error in the Yaw direction was $3^{\circ}$, the specific OAR showed a maximum difference of 18.4 %. Conclusion : "Tomotherapy couch device" capable of correcting the Yaw direction can be manufactured at a lower cost compared to the effect, and it can prevent the patient's MVCT image dose for re-imaging. Accurate radiation therapy without errors can be performed.

  • PDF

Roll/yaw controller design using double gimbaled momentum wheel (더블김벌 모멘텀휠을 이용한 롤/요 제어기 설계)

  • 박영웅;방효충
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1099-1102
    • /
    • 1996
  • In this paper, roll/yaw attitude control of spacecraft using a double gimbaled wheel is discussed with two feedback controllers designed. One is a PD controller with no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed as a first order system and a lag parameter is designed for the yaw angle control. There are two case simulations for each controller ; constant disturbance torques and initial errors of nutation at motion. We obtain the results through simulations that steady-state error and rising time of yaw angle are determined by the compensator. Simulation parameters used in this study are the values of KOREASAT F1.

  • PDF

A Nonlinear Observer for the Estimation of the Full State of a Sawyer Motor (평판 모터 상태 관측을 위한 비선형 관측기)

  • Kim, Won-Hee;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2292-2297
    • /
    • 2010
  • To improve the performances of Sawyer motors and to regulate yaw rotation, various feedback control methods have been developed. Almost all of these methods require information on the position, velocity or full state of the motor. Therefore, in this paper, a nonlinear observer is designed to estimate the full state of the four forcers in a Sawyer motor. The proposed method estimates the full state using only positional feedback. Generally, Sawyer motors are operated within a yaw magnitude of several degrees; outside of this range, Sawyer motors step out. Therefore, this observer design assumes that the yaw is within ${\pm}90^\b{o}$. The convergence of the estimation error is proven using the Lyapunov method. The proposed observer guarantees that the estimation error globally exponentially converges to zero for all arbitrary initial conditions. Furthermore, since the proposed observer does not require any transformation, it may result in a reduction in the commutation delay. The simulation results show the performance of the proposed observer.

Simplified Nonlinear Control for Planar Motor based on Singular Perturbation Theory (특이섭동이론을 기반으로한 평판모터의 비선형 제어)

  • Seo, HyungDuk;Shin, Donghoon;Lee, Youngwoo;Chung, Chung Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.289-296
    • /
    • 2015
  • In this paper, we propose the nonlinear control based on singular perturbation theory for position tracking and yaw regulation of planar motor. Singular perturbation theory is characterized by the existence of slow and fast transients in the system dynamics. The proposed method consists of auxiliary control to decouple error dynamics. We develop model reduction with control input. Also, we derIve decoupled error dynamics with auxiliary input. The controller is designed in order to guarantee the desired position and yaw regulation without current feedback or estimation. Simulation results validate the effect of proposed method.