• Title/Summary/Keyword: Yarn tension

Search Result 46, Processing Time 0.028 seconds

Effects of Weaving Machine Characteristics on the Physical Properties of PET Fabrics (IV) (직기 특성이 PET직물 물성에 미치는 영향(IV))

  • Kim Seung Jin;Jin Young Dae;Kang Ji man;Jung Gee Jin
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.54-61
    • /
    • 2004
  • This research surveys the differences of fabric mechanical properties with the different looms and the fabric positions according to the warp and weft yarn tensions on the Vamatex and Omega-Panter looms respectively. For this purpose, the grey fabrics woven by PET filament using two test looms are dyed and finished. The processing shrinkages are measured on each processes such as dryer, scouring, pre-set, dyeing and final-set using the fabric density and width. The mechanical properties of the finished fabrics are measured and discussed with relation to the warp and weft yarn tensions of the two looms and the fabric positions. In addition, the fabric thickness according to the fabric positions such as right, left selvedges and center of the fabrics is also measured and discussed with the characteristics of the Vamatex and Omega-Panter looms.

Effect of Ring Spinning Tension on the Properties of Cotton Spun Yarn (링 정방장력이 면방적사 물성에 미치는 영향)

  • 김규호;박민규;양중식
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.73-76
    • /
    • 2002
  • 최근 링 정방기의 생산속도 증가로 인해 사절 및 사물성에 큰 영향을 미치는 정방장력의 중요성이 더욱 커지고 있다. 링 정방장력은 스핀들 회전수, 트래블러 중량, 링직경, 콥 직경 등과 같은 공정인자와 링 레일 상하운동에 따른 벌룬 높이, 얀 가이드에서의 실 굴절각도, 콥의 권취 반경 및 공기저항 등에 의해서도 영향을 받게 된다[1]. 이와 관련하여 링 정방장력 해석[2], 정방 공정인자가 정방장력에 미치는 영향[3] 및 정방 공정인자가 방적사 물성에 미치는 영향[4] 등의 연구가 많이 이루어져 왔다. (중략)

  • PDF

A Study on Design of Auto Tension Control Creel Compression Coil Spring for Twister Tensioner (섬유기계의 트위스터용 스프링 텐션 유지를 위한 압축코일 스프링 설계에 관한 연구)

  • Kim, Jong-Su;Jang, Se-Won
    • 연구논문집
    • /
    • s.34
    • /
    • pp.87-99
    • /
    • 2004
  • A spring tension control device is used as a very important part of an twister system. The friction force of tensioner must keep same friction force during winding in package. For satisfy this function, many device used common compression coil spring. In this paper, by using the case-building technique which was based on simple theory that unknown design variables are induced by given input design variables by the designer, design automation algorithm about rectangular section compression springs with elastic characteristic is developed. Four design equation are justified in using of analysis of torsion of straight bar of rectangular section and geometrical condition of coil spring. Four design equation and nine design variables are computed by case-building technique.

  • PDF

A Study on the Threadline Instability on the Belt-type Texturing Process (벨트형 가연공정에서의 사도불안정에 관한 연구)

  • 이민수;김승진;박경순
    • Textile Coloration and Finishing
    • /
    • v.16 no.1
    • /
    • pp.5-9
    • /
    • 2004
  • This research surveys the threadline instability on the belt texturing machine according to the 1st heater temperature, draw ratio and velocity ratio. the threadline instability to the time, which is called surging phenomena, is analysed with variations of draw ratio and velocity ratio. In addiction, the surging phenomena is investigated with the variation of the untwisting tension and false twist mechanism on the belt texturing machine. The breaking strain, modulus and yam unevenness of the DTY along the yarn length are measured and analysed with the surging phenomena which is due to untwisting tension variation on the threadline according to the draw ratio, 1st heater temperature and velocity ratio.

Evaluating the Mechanical Properties of Fiber Yarns for Developing Synthetic Fiber Chains

  • Kim, Kyeongsoo;Kim, Taewan;Kim, Namhun;Kim, Dokyoun;Kang, Yongjun;Kim, Seonjin
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.426-433
    • /
    • 2021
  • In this study, three types of synthetic fiber materials were evaluated, namely, DM20, SK78, and T147, to replace steel chains in shipbuilding and offshore fields with fiber chains as there is increasing demand for chains with lighter weights and improved usabilities. The strength and quasi-static stiffness were analyzed to select suitable yarns for the fiber chains. The durability of the yarn was evaluated by performing a 3-T (time to rupture) test as a specific tension level. The results of the experiment revealed excellent dynamic stiffness in DM20 and highest values of the windward and leeward stiffness in T147. 3-T linear design characteristic curves for a specific tension level were derived for the three types of fiber materials. The findings of this study can provide insights for improving strength and durability in fiber chain design.

A Study on the Mechanical Properties of Knit Fabric Using 3D Printing -Focused on PLA, TPU Filament- (3D프린팅을 이용한 편성물의 역학적 특성 연구 -PLA, TPU 필라멘트를 중심으로-)

  • Han, Yoojung;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.22 no.4
    • /
    • pp.93-105
    • /
    • 2018
  • Using FDM 3D printing, yarn shape and composition were modeled and 3D printed with PLA and TPU filaments currently used for apparel. Based on this, mechanical characteristics were measured to determine 3D printing yarn according to type of filaments in the 3D printed output and deformation and recovery characteristics due to differences in structure type. As a result of examining tensile and shear characteristics of PLA and TPU 3D printing compiles, TPU overall was measured with significantly lower stress than PLA. This is due to high elasticity of TPU's character, revealing that it has better flexibility than PLA. In addition, during deformation due to external forces, the more freedom between the head and foot parts of the loop, and the lower the force associated with each other, the more flexible it is. TPU revealed that it was easier to tension and recovery from tensile deformation than PLA, indicating potential for clothing materials using 3D printing. If high-molecular materials, such as PLA flexibility, it is likely to provide some flexibility through development of styles, including degree of freedom in modeling. Based on this, we provide basic data for developing 3D printing textures that can be satisfied with textile for apparel.

Highly Elastic Two-wire Transmission Line E-textile Band for Smart Wearable Circuit Formation (스마트 웨어러블 회로 구성을 위한 고신축성 이선 전송선형 전자섬유 밴드)

  • Roh, Jung-Sim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.2
    • /
    • pp.367-374
    • /
    • 2022
  • Herein, a highly elastic e-textile band with a two-wire transmission line was designed and fabricated for smart clothing applications. A conductive yarn with a very uniform low electrical resistance of 0.0357 Ω/cm was developed and used for the signal and ground lines. To control the elasticity of the e-textile band, spandex yarns were added in the warp direction during knitting and the tension was adjusted. As the length of the e-textile band increased, its RF performance deteriorated. Furthermore, the frequency corresponding to -3 dB S21 was lower in the 30% stretched band than in the unstretched band. For the e-textile bands with lengths 10, 50, and 100 cm, the frequencies corresponding to -3 dB S21 were 107.77, 24.56, and 13.02 MHz when not stretched, and 88.74, 22.02, and 12.60 MHz when stretched by 30%. The fabricated bands were flatter, more flexible, and more elastic than transmission line cables; thus, they can be easily integrated into wearables and smart clothing. However, to increase RF performance and achieve optimum utilization, future studies must focus on the fabrication of transmission lines with lower resistance and reduced distance between the signal and ground lines, and thus the number of transmission lines can be increased.

A Study on the Variation of Physical Properties of the PET Filament Yarn for Sensitive Clothes (감성 의류용 PET 사의 물성 변화에 관한 연구)

  • 김승진;홍성대;서봉기;심승범
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.61-66
    • /
    • 2002
  • Recently PET fabrics woven by high sensitive PET yams were used as a high sensitive clothing. Such high sensitive PET woven fabrics for clothing are passing through various processes, and are influenced by processing tension and heat, it makes the physical properties of PET yarns changing and makes the defects of PET fabric. Therefore many difficulties are faced to decide processing conditions for making high sensitive PET fabric. But few research related to the processing conditions of PET yarns and issue point for producing high sensitive clothing was only performed. In this study, POY and SDY of PET manufactured in seven filament manufacturing companies are selected, and their physical properties in each layers of filament cake divided by 50000m are measured and analyzed. Especially, wet and dry shrinkages according to the various wet and dry heat temperatures are analyzed for supplying basic physical data of PET yam and for enhancing PET yarn quality used for the high sensitive clothing.

  • PDF

Fault Detection in the Two-for-One Twister

  • Park, Ho-Cheol;Koo, Doe-Gyoon;Lee, Jie-Tae;Cho, Hyun-Ju;Han, Young-A;Sohn, Sung-Ok;Ji, Byung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.763-768
    • /
    • 2006
  • The two-for-one(TFO) twister is precision machinery that twists fibers rapidly under constant tension. Since the quality of the twisted yarn is directly deteriorated by faults of the twister, such as the distortion of the spinning axis, bearing abrasion, and tension irregularity, it is important to detect faults of the TFO twister at an early stage. In this research, a new algorithm is proposed to detect faults of the TFO twister and their causes, by measuring the vibrations of the TFO twister and obtaining frequency components with a FFT algorithm. The TFO twister with faults showed increased vibrations and each fault generated vibrations at different frequencies. By analyzing changes of characteristics of vibrations, we can determine faulty twisters. The proposed fault detection algorithm can be implemented cheaply with a signal processor chip. It can be used to find when to repair a faulty TFO twister without much loss of yam on-line.

Environmentally-Sustainable Single End Slashing

  • Ok, Hyun-Young;Park, Heung-Sup;Carr, Wallace;Park, Soo-Min
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.376-376
    • /
    • 2006
  • The process of weaving fabrics with high levels of tension and abrasion can cause damage to the yarn threads. To protect threadlines during the process, a protective polymer is coated on the surface of the yarns prior to weaving. This application process is known as slashing. The current slashing system is incompatible with today's demand activated manufacturing strategies. Methods of improving the uniformity of polymer coating application were studied, and several applicators were designed and evaluated. Prewetting of the threadlines before coating application was shown to greatly improve coating uniformity. The objective of the research is to design a single-end slashing process that is environmentally friendly and will improve productivity and flexibility.

  • PDF