• Title/Summary/Keyword: YSZ(Yttria-stabilized zirconia)

Search Result 152, Processing Time 0.026 seconds

Microstructure control and change in thermal conductivity of 8YSZ/SiO2 multi-compositional coating by suspension plasma spraying

  • Jeon, Hak-Beom;Lee, In-Hwan;An, Gye Seok;Oh, Yoon-Suk
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.450-454
    • /
    • 2018
  • In recent years, thermal insulation coating technology for automotive engine parts has received significant attention as a means of improving the thermal efficiency of automotive engines. One of the characteristics of thermal insulation coatings is their low thermal conductivity, and, materials such as YSZ (Yttria-stabilized zirconia), which have low thermal conductivity, are used for this purpose. This research presents a study of the changes in the microstructure and thermal conductivity of $8YSZ/SiO_2$ multi compositional thermal insulation coating for different compositions, and particle size distributions of suspension, when it is subjected to suspension plasma spraying. To obtain a porous coating structure, the mixing ratio of 8YSZ and $SiO_2$ particles and the particle sizes of the $SiO_2$ were changed. The microstructure, phase formation behavior, porosity and thermal conductivity of the coatings were analyzed. The porosities were found to be 1.2-32.1%, and the thermal conductivities of the coatings were 0.797-0.369 W/mK. The results of the study showed that the microstructures of the coatings were strongly influenced by the particle size distributions, and that the thermal conductivities of the coatings were greatly impacted by the microstructures of the coatings.

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.

The Low-field Tunnel-type Magnetoresistance Characteristics of Thin Films Deposited on Different Substrate (기판 효과에 따른 저 자장 영역에서의 자기저항 효과에 관한 연구)

  • Lee, Hi-Min;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.41-45
    • /
    • 2002
  • The low-field tunnel-type magnetoresistance (MR) properties of sol-gel derived $La_{0.7}Pb_{0.3}MnO_3(LPMO)$ thin film deposited on different substrate have been investigated. Polycrystalline thin films were fabricated by spin-coating on $SiO_2/Si(100)$ substrate and that with yttria-stabilized zirconia (YSZ) buffer layer, while c-axis-oriented thim film was grown on $LaAlO_3(001)$ (LAO) single crystal substrate. The full width half maximum (FWHM) of the rocking curve scan of LPMO/LAO film is $0.32^{\circ}$. Tunnel-type MR ratio is 0.52 % in $LPMO/SiO_2/Si$(100) film and that of $LPMO/YSZ/SiO_2/Si$(100) film is as high as 0.68 %, whereas that of LPMO/LAO(001) film is less than 0.4 % under the applied field of 500 Oe at 300 K. Well-pronounced MR hysteresis was registered with an MR peak in the vicinity of the coercive field. The low-field tunnel-type MR characteristics of thin films deposited on different substrates originates from the behavior of grain boundary properties.

Study on Depositing Oxide Films on Ni Substrate for Superconducting Tape (초전도 테이프 제작을 위한 니켈기판 상의 산화물 박막 증찰)

  • Kim, Ho-Sup;Shi, Dongqui;Ko, Rock-Kil;Chung, Jun-Ki;Ha, Hong-Soo;Song, Kyu-Jeong;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1356-1361
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of ///. The buffer layer consists of multi-layer, this study reports the deposition method and optimal deposition conditions of YSZ(Yttria-stabilized zirconia) layer which plays a important part in preventing the elements of substrate from diffusing into the superconducting layer. YSZ layer was deposited by DC reactive sputtering technique using water vapor for oxidizing deposited elements on substrate. To investigate optimal thickness of YSZ film, four YSZ/CeO$_2$/Ni samples with different YSZ thickness(130 nm, 260 nm, 390 nm, and 650 nm) were prepared. The SEM image showed that the surface of YSZ layer was getting to be rougher as YSZ layer was getting thicker and the growth mode of YSZ layer was columnar grain growth. After CeO$_2$ layer was deposited with the same thickness of 18.3 nm on each four samples, YBCO layer was deposited by PLD method with the thickness of 300 nm. The critical currents of four samples were 0, 6 A, 7.5 A, and 5 A respectively. This shows that as YSZ layer is getting thicker, YSZ layer plays a good role as a diffusion barrier but the surface of YSZ layer is getting rougher.

Fabrication and Its Characteristics of YSZ Composite with Added Transition Metal Oxides (천이금속산화물이 첨가된 YSZ 복합체의 제조 및 그 특성)

  • 최성운;박재성
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.341-349
    • /
    • 2002
  • Electrical, mechanical and sinterability properties of yttria-stabilized zirconia doped with 5.35wt% $Y_2$O$_3$(Y$_2$O$_3$- containing stabilized zirconia : YSZ) were studied as a function of $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ addition. The ratio of monoclinic phase to tetragonal phase was changed by the addition of $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ to 8.00 wt% and sintered density decreased with increasing $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ addition. Fracture toughness increased with the increase of monoclinic to tetragonal phase ratio and was maximum at about 18%. When transition metals such as CoO, Fe$_2$O$_3$ or MnO$_2$ was added more than 1.5 wt%, the electrical conductivity of YSZ increased. But $Al_2$O$_3$ hardly affected the electrical conductivity of YSZ. The addition of $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ into YSZ resulted in the more complex behavior of fracture toughness and hardness variation and the specimen with 1.5wt%-Fe$_2$O$_3$, 3.0wt%-Al$_2$O$_3$ and 1.5wt%-CoO showed the monoclinic to tetragonal phase ratio of 18% and the highest toughness of 10.8 MPa.m$^{1}$2/ and Vickers hardness of 1201 kgf/mm$^2$.

Electrical Properties of YSZ Electrolyte Film Prepared by Electron Beam PVD (EB-PVD법에 의해 제조된 YSZ 전해질의 전기적 특성)

  • Shin, Tae-Ho;Yu, Ji-Haeng;Lee, Shiwoo;Han, In-Sub;Woo, Sang-Kuk;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.117-122
    • /
    • 2005
  • Electron Beam Physical Vapor Deposition (EB-PVD) is a typical technology for thermal barrier coating with Yttria Stabilized Zirconia (YSZ) on aero gas turbine engine. In this study EB-PVD method was used to fabricate dense YSZ film on NiO-YSZ as a electrolyte of Solid Oxide Fuel Cell (SOFC). Dense YSZ films of -10 $\mu$m thickness showed nano surface structure depending on deposition temperature. Electrical conductivities of YSZ film and electric power density of the single cell were evaluated after screen- printing $LaSrCoO_3$ as a cathode.

Redox Characteristics of Cobalt Oxide based Oxygen Carriers for Chemical-Looping Combustion (Chemical-looping combustion을 위한 cobalt oxide계 산소운반체의 산화 환원특성)

  • Lee, J.B.;Park, C.S.;Choi, S.I.;Song, Y.W.;Yang, H.S.;Kim, Y.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.46-53
    • /
    • 2004
  • Redox characteristics of cobalt oxide-based oxygen carriers were tested for chemical-looping combustion. Cobalt oxide was chosen as active metal oxide and $CoAl_2O_4$ was compared with YSZ(yttria-stabilized zirconia) as a binder. Cobalt oxide/$CoAl_2O_4$ was prepared by sol-gel method. Hydrogen fuel was reacted with metal oxide and then the reduced metal was successively oxidized by air. The effects of reaction temperature were measured and the regenerabilies during 10 cycles were examined by a TGA. In regenerability of cobalt oxide/YSZ and cobalt oxide/$CoAl_2O_4$, after they showed above 90% conversion in first reduction, they were stabilized in about 70-75% conversion. From reaction rate constant obtained, the activation energies of cobalt oxide/YSZ in oxidation and reduction were 51.47kJ/mol and 7.71kJ/mol respectively.

The Effect of Using Nano NiO Powder Made by Pulsed Wire Evaporation (PWE) Method on SOFC Anode Functional Layer (Pulsed Wire Evaporation(PWE) Method으로 제조된 나노 NiO 분말의 SOFC 연료극 기능성층으로의 적용)

  • Kim, Hae-Won;Kim, Dong-Ju;Park, Seok-Joo;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Ryul;Yoon, Soon-Gil;Song, Rak-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.485-491
    • /
    • 2009
  • In present work, NiO/YSZ anode functional layer was prepared by nano NiO powder and 8YSZ powder. The nano NiO powders were made by Pulsed wire evaporation (PWE) method. Nano NiO- YSZ functional layer was sintered at the temperature of $900-1400^{\circ}C$. The prepared functional layer was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. The nano NiO- YSZ anode functional layer sintered at $1300^{\circ}C$ shows the lowest polarization resistance. Nano NiO- YSZ anode functional layer shows about two times smaller polarization resistance than the anode functional layer made by commercial NiO-YSZ powders. Based on these experimental results, it is concluded that the nano NiO-YSZ cermet is suitable as a anode functional layer operated at $800^{\circ}C$.

Electrochemical Corrosion Properties of YSZ Coated AA1050 Aluminium Alloys Prepared by Aerosol Deposition (에어로졸 증착법에 의한 YSZ 코팅된 AA1050 알루미늄 합금의 전기화학적 부식 특성)

  • Ryu, Hyun-Sam;Lim, Tae-Seop;Ryu, Jung-Ho;Park, Dong-Soo;Hong, Seong-Hyeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.439-446
    • /
    • 2011
  • Yttria stabilized zirconia (YSZ) coating was formed on AA1050 Al alloys by aerosol deposition (AD), and its electrochemical corrosion properties were investigated in 3.5 wt% NaCl and 0.5M $H_2SO_4$ solutions. The crack-free, dense, and ~5 ${\mu}m$ thick YSZ coating was successfully obtained by AD. The as-deposited coating was composed of cubic-YSZ nanocrystallites of ~10 nm size. The potentiodynamic test indicated that the YSZ coated Al alloy had much lower corrosion current densities (2 nA/$cm^2$) by comparison to uncoated sample and exhibited a passive behavior in anodic branch. Particularly, a pitting breakdown potential could not be identified in $H_2SO_4$. EIS tests revealed that the impedance of YSZ coated sample was ${\sim}10^6{\Omega}cm^2$ in NaCl and ${\sim}10^7{\Omega}cm^2$ in $H_2SO_4$, which was about 3 or 4 orders of magnitude higher than that of uncoated sample. Consequently, the corrosion resistance of Al alloy had been significantly enhanced by the YSZ coating.

Synthesis and Properties of La1-xSrxMnO3 System as Air Electrode for Solid Oxide Fuel Cell (고체산화물 연료전지의 공기극으로서 La1-xSrxMnO3 계의 합성 및 특성)

  • Lee, You-Kee;Lee, Young-Ki
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.470-475
    • /
    • 2012
  • $La_{1-x}Sr_xMnO_3$(LSM,$0{\leq}x{\leq}0.5$) powders as the air electrode for solid oxide fuel cell were synthesized by a glycine-nitrate combustion process. The powders were then examined by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The as-formed powders were composed of very fine ash particles linked together in chains. X-ray maps of the LSM powders milled for 1.5 h showed that the metallic elements are homogeneously distributed inside each grain and in the different grains. The powder XRD patterns of the LSM with x < 0.3 showed a rhombohedral phase; the phase changes to the cubic phase at higher compositions($x{\geq}0.3$) calcined in air at $1200^{\circ}C$ for 4 h. Also, the SEM micrographs showed that the average grain size decreases as Sr content increases. Composite air electrodes made of 50/50 vol% of the resulting LSM powders and yttria stabilized zirconia(YSZ) powders were prepared by colloidal deposition technique. The electrodes were studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell(SOFC). Reproducible impedance spectra were confirmed using the improved cell, which consisted of LSM-YSZ/YSZ. The composite electrode of LSM and YSZ was found to yield a lower cathodic resistivity than that of the non-composite one. Also, the addition of YSZ to the $La_{1-x}Sr_xMnO_3$ ($0.1{\leq}x{\leq}0.2$) electrode led to a pronounced, large decrease in the cathodic resistivity of the LSM-YSZ composite electrodes.