Microstructure control and change in thermal conductivity of 8YSZ/SiO2 multi-compositional coating by suspension plasma spraying

  • Jeon, Hak-Beom (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, In-Hwan (Department of Materials Science and Engineering Korea University) ;
  • An, Gye Seok (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology)
  • Published : 2018.12.01

Abstract

In recent years, thermal insulation coating technology for automotive engine parts has received significant attention as a means of improving the thermal efficiency of automotive engines. One of the characteristics of thermal insulation coatings is their low thermal conductivity, and, materials such as YSZ (Yttria-stabilized zirconia), which have low thermal conductivity, are used for this purpose. This research presents a study of the changes in the microstructure and thermal conductivity of $8YSZ/SiO_2$ multi compositional thermal insulation coating for different compositions, and particle size distributions of suspension, when it is subjected to suspension plasma spraying. To obtain a porous coating structure, the mixing ratio of 8YSZ and $SiO_2$ particles and the particle sizes of the $SiO_2$ were changed. The microstructure, phase formation behavior, porosity and thermal conductivity of the coatings were analyzed. The porosities were found to be 1.2-32.1%, and the thermal conductivities of the coatings were 0.797-0.369 W/mK. The results of the study showed that the microstructures of the coatings were strongly influenced by the particle size distributions, and that the thermal conductivities of the coatings were greatly impacted by the microstructures of the coatings.

Keywords

Acknowledgement

Supported by : Ministry of Trade, Industry and Energy (MOTIE)

References

  1. A. Uzun, I. Cevik, and M. Akcil, Surface & Coatings Technology 116-119 (1999) 505-507. https://doi.org/10.1016/S0257-8972(99)00099-7
  2. I. Taymaz, K. CakVr, and A. Mimaroglu, Surface & Coatings Technology 200 (2005) 1182-1185. https://doi.org/10.1016/j.surfcoat.2005.02.049
  3. E. Buyukkaya, T. Engin, and M. Cerit, Energy Conversion and Management 47 (2006) 1298-1310. https://doi.org/10.1016/j.enconman.2005.06.021
  4. J. Vetter, G. Barbezat, J. Crummenauer, and J. Avissar, Surface & Coatings Technology 200 (2005) 1962-1968 https://doi.org/10.1016/j.surfcoat.2005.08.011
  5. Th. Lampe, S. Eisenberg, and E. Rodriguez Cabeo, Surface & Coatings Technology 174-175 (2003) 1-7. https://doi.org/10.1016/S0257-8972(03)00473-0
  6. I.I. Taymaz, Surface & Coatings Technology 201 (2007) 5249-5252. https://doi.org/10.1016/j.surfcoat.2006.07.123
  7. T. Hejwowski, and A. Weronski, Vacuum 65 (2002) 427-432. https://doi.org/10.1016/S0042-207X(01)00452-3
  8. M.R. Loghman-Estarki, R. Shoja Razavi, H. Edris, S.R. Bakhshi, M. Nejati, and H. Jamali, Ceramics International 42 (2016) 7432-7439. https://doi.org/10.1016/j.ceramint.2016.01.147
  9. E. Buyukkaya, and M. Cerit, Surface & Coatings Technology 202 (2007) 398-402. https://doi.org/10.1016/j.surfcoat.2007.06.006
  10. N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284. https://doi.org/10.1126/science.1068609
  11. S.K. Rupangudi, C.S. Ramesh, K. Veerabhadhrappa, R.R. V, SAE International Journal of Materials and Manufacturing 7[3] (2014) 633-637. https://doi.org/10.4271/2014-01-1021
  12. Th. Lampe, S. Eisenberg, and E. Rodriguez Cabeo, Surface & Coatings Technology 174-175 (2003) 1-7. https://doi.org/10.1016/S0257-8972(03)00473-0
  13. G. Zhang, X. Fan, R. Xu, L. Su, and T.J. Wang, Ceramics International 44 (2018) 12655-12663. https://doi.org/10.1016/j.ceramint.2018.04.065
  14. A.G. Evans, D.R. Clarke, and C.G. Levi, Journal of the European Ceramic Society 28 (2008) 1405-1419. https://doi.org/10.1016/j.jeurceramsoc.2007.12.023
  15. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Progress in Materials Science 46 (2001) 505-533. https://doi.org/10.1016/S0079-6425(00)00020-7
  16. B.-K. Jang, and H. Matsubara, Journal of the European Ceramic Society, 26 (2006) 1585-1590. https://doi.org/10.1016/j.jeurceramsoc.2005.03.248
  17. K.S. Ravichandran, K. An, R.E. Dutton, and S.L. Semiatin, J. Am. Ceram. Soc. 82 (1999) 673.
  18. A. Rabiei and A.G. Evans, Acta Mater. 48 (2000) 3963-3976. https://doi.org/10.1016/S1359-6454(00)00171-3
  19. F. Zhou, Y. Wang, Z. Cui, L. Wang, J. Gou, Q. Zhang, and C. Wang, Ceramics International 43 (2017) 4102-4111. https://doi.org/10.1016/j.ceramint.2016.12.014
  20. H.B. Guo, S. Kuroda, and H. Murakami, J. Am. Ceram. Soc. 89 (2006) 1432-1439. https://doi.org/10.1111/j.1551-2916.2005.00912.x
  21. X.F. Zhang, K.S. Zhou, M. Liu, C.M. Deng, C.G. Deng, J.B. Song, and X. Tong, Ceramics International 42 (2016) 13969-13975. https://doi.org/10.1016/j.ceramint.2016.05.210
  22. K. Van Every, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, and D. Sordelet, J. Therm. Spray. Technol. 20 (2011) 817-828. https://doi.org/10.1007/s11666-011-9632-2
  23. A. Guignard, G. Mauer, R. Vassen, and Detlev Stover, J. Therm. Spray Technol. 21 (2012) 416-424. https://doi.org/10.1007/s11666-012-9762-1
  24. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and Detlev Stoever, J. Therm. Spray Technol. 17 (2007) 115-123.
  25. B. Roge, A. Fahr, J.S.R. Giguere, and K.I. McRae, ASM International 12[4] (2003) 530-535.
  26. R. Ghasemi, and H. Vakilifard, Ceramics International, 43 (2017) 8556-8563. https://doi.org/10.1016/j.ceramint.2017.03.074
  27. S. Passoni, F. da S. Borges, L. F. Pires, S. da C. Saab, M. Cooper, Cienc. agrotec. 38 [2] (2014) 122-128. https://doi.org/10.1590/S1413-70542014000200003
  28. M. Abdellaoui, and E. Gaffet, Acta metallurgica et Materialia 43 (1994) 1087-1098.
  29. N. Markocsan, P. Nylen, J. Wigren, and X.H. Li, Journal of Thermal Spray Technology 16 (2007) 498-505. https://doi.org/10.1007/s11666-007-9068-x
  30. R. Srinivasan, R.J. De Angelis, G. Ice, and B.H. Davis, Journal of Materials Research 6 (2011) 1287-1292.
  31. M. Rahaman, J. Gross, R. Dutton, and H. Wang, Acta Materialia 54 (2006) 1615-1621. https://doi.org/10.1016/j.actamat.2005.11.033
  32. J. Feng, B. Xiao, R. Zhou, and W. Pan, Scripta Materialia 68 (2013) 727-730. https://doi.org/10.1016/j.scriptamat.2013.01.010
  33. S. Wall, W. John, H.-c. Wang, and S.L. Goren, Aerosol Science and Technology 12[4] (1990) 926-946. https://doi.org/10.1080/02786829008959404
  34. J. Laskin, and C. Lifshitz, JOURNAL OF MASS SPECTROMETRY 36 (2001) 459-478. https://doi.org/10.1002/jms.164
  35. K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Journal of Thermal Spray Technology 20 (2011) 817-828. https://doi.org/10.1007/s11666-011-9632-2