Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.9.470

Synthesis and Properties of La1-xSrxMnO3 System as Air Electrode for Solid Oxide Fuel Cell  

Lee, You-Kee (Division of Green Energy Engineering, Uiduk Unversity)
Lee, Young-Ki (Division of Green Energy Engineering, Uiduk Unversity)
Publication Information
Korean Journal of Materials Research / v.22, no.9, 2012 , pp. 470-475 More about this Journal
Abstract
$La_{1-x}Sr_xMnO_3$(LSM,$0{\leq}x{\leq}0.5$) powders as the air electrode for solid oxide fuel cell were synthesized by a glycine-nitrate combustion process. The powders were then examined by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The as-formed powders were composed of very fine ash particles linked together in chains. X-ray maps of the LSM powders milled for 1.5 h showed that the metallic elements are homogeneously distributed inside each grain and in the different grains. The powder XRD patterns of the LSM with x < 0.3 showed a rhombohedral phase; the phase changes to the cubic phase at higher compositions($x{\geq}0.3$) calcined in air at $1200^{\circ}C$ for 4 h. Also, the SEM micrographs showed that the average grain size decreases as Sr content increases. Composite air electrodes made of 50/50 vol% of the resulting LSM powders and yttria stabilized zirconia(YSZ) powders were prepared by colloidal deposition technique. The electrodes were studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell(SOFC). Reproducible impedance spectra were confirmed using the improved cell, which consisted of LSM-YSZ/YSZ. The composite electrode of LSM and YSZ was found to yield a lower cathodic resistivity than that of the non-composite one. Also, the addition of YSZ to the $La_{1-x}Sr_xMnO_3$ ($0.1{\leq}x{\leq}0.2$) electrode led to a pronounced, large decrease in the cathodic resistivity of the LSM-YSZ composite electrodes.
Keywords
LSM; combustion process; composite air electrodes; LSM-YSZ; impedance spectra;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Abe, M. Naito, K. Sato and T. Kinoshita, Trans. JWRI, 39(1), 65 (2010).
2 T. Suzuki, M. Awano, P. Jasinski, V. Petrovsky and H. U. Anderson, Solid State Ionics, 177, 2071 (2006).   DOI   ScienceOn
3 V. A. C. Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold and F. Tietz, J. Power Sources, 141, 216 (2005).   DOI   ScienceOn
4 H. S. Song, W. H. Kim, S. H. Hyun, J. Moon, J. Kim and H. -W. Lee, J. Power Sources, 167, 258 (2007).   DOI   ScienceOn
5 M. Juhl, S. Primdahl, C. Manon and M. Mogensen, J. Power Sources, 61, 173 (1996).   DOI   ScienceOn
6 K. Sasaki, J. -P. Wurth, R. Gschwend, M. Gödickemeier and L. J. Gauckler, J. Electrochem. Soc., 143(2), 530 (1996).   DOI
7 Y. K. Lee, Kor. J. Mater. Res., 11(4), 283 (2001) (in Korean).
8 S. Wang, Y. Jiang, Y. Zhang, J. Yan and W. Li, J. Electrochem. Soc., 145(6), 1932 (1998).   DOI
9 J. X. Wang, Y. K. Tao, J. Shao and W. G. Wang, J. Power Sources, 186, 344 (2009).   DOI   ScienceOn
10 L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas and G. J. Exarhos, Mater. Lett., 10(1,2), 6 (1990).   DOI   ScienceOn
11 G. V. S. Rao, B. M. Wanklyn and C. N. R. Rao, J. Phys. Chem. Solid., 32, 345 (1971).   DOI   ScienceOn
12 S. T. Aruna, M. Muthuraman and K. C. Patil, J. Mater. Chem., 7(12), 2499 (1997).   DOI   ScienceOn
13 S. S. Manoharan and K. C. Patil, J. Solid State Chem., 102, 267 (1993).   DOI   ScienceOn
14 J. H. Choi, J. H. Jang, J. H. Ryu and S. M. Oh, J. Power Sources, 87, 92 (2000).   DOI   ScienceOn
15 T. Ioroi, T. Hara, Y. Uchimoto, Z. Ogumi and Z. Takehara, J. Electrochem. Soc., 145(6), 1999 (1998).   DOI
16 E. Siebert, A. Hammouche and M. Kleitz, Electrochim. Acta, 40(11), 1741 (1995).   DOI   ScienceOn
17 S. de Souza, S. J. Visco and L. C. De Jonghe, Solid State Ionics, 98, 57 (1997).   DOI   ScienceOn
18 Y. L. Liu, K. Thyden, M. Chen and A. Hagen, Solid State Ionics, 206, 97 (2012).   DOI   ScienceOn
19 H. Fukunaga, M. Ihara, K. Sakaki and K. Yamada, Solid State Ionics, 86-88, 1179 (1996).   DOI   ScienceOn