Browse > Article

Microstructure control and change in thermal conductivity of 8YSZ/SiO2 multi-compositional coating by suspension plasma spraying  

Jeon, Hak-Beom (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology)
Lee, In-Hwan (Department of Materials Science and Engineering Korea University)
An, Gye Seok (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology)
Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Abstract
In recent years, thermal insulation coating technology for automotive engine parts has received significant attention as a means of improving the thermal efficiency of automotive engines. One of the characteristics of thermal insulation coatings is their low thermal conductivity, and, materials such as YSZ (Yttria-stabilized zirconia), which have low thermal conductivity, are used for this purpose. This research presents a study of the changes in the microstructure and thermal conductivity of $8YSZ/SiO_2$ multi compositional thermal insulation coating for different compositions, and particle size distributions of suspension, when it is subjected to suspension plasma spraying. To obtain a porous coating structure, the mixing ratio of 8YSZ and $SiO_2$ particles and the particle sizes of the $SiO_2$ were changed. The microstructure, phase formation behavior, porosity and thermal conductivity of the coatings were analyzed. The porosities were found to be 1.2-32.1%, and the thermal conductivities of the coatings were 0.797-0.369 W/mK. The results of the study showed that the microstructures of the coatings were strongly influenced by the particle size distributions, and that the thermal conductivities of the coatings were greatly impacted by the microstructures of the coatings.
Keywords
Thermal insulation coating; Suspension plasma spraying; Microstructure; Thermal conductivity; Porosity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Uzun, I. Cevik, and M. Akcil, Surface & Coatings Technology 116-119 (1999) 505-507.   DOI
2 I. Taymaz, K. CakVr, and A. Mimaroglu, Surface & Coatings Technology 200 (2005) 1182-1185.   DOI
3 E. Buyukkaya, T. Engin, and M. Cerit, Energy Conversion and Management 47 (2006) 1298-1310.   DOI
4 Th. Lampe, S. Eisenberg, and E. Rodriguez Cabeo, Surface & Coatings Technology 174-175 (2003) 1-7.   DOI
5 I.I. Taymaz, Surface & Coatings Technology 201 (2007) 5249-5252.   DOI
6 T. Hejwowski, and A. Weronski, Vacuum 65 (2002) 427-432.   DOI
7 S.K. Rupangudi, C.S. Ramesh, K. Veerabhadhrappa, R.R. V, SAE International Journal of Materials and Manufacturing 7[3] (2014) 633-637.   DOI
8 M.R. Loghman-Estarki, R. Shoja Razavi, H. Edris, S.R. Bakhshi, M. Nejati, and H. Jamali, Ceramics International 42 (2016) 7432-7439.   DOI
9 E. Buyukkaya, and M. Cerit, Surface & Coatings Technology 202 (2007) 398-402.   DOI
10 N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.   DOI
11 Th. Lampe, S. Eisenberg, and E. Rodriguez Cabeo, Surface & Coatings Technology 174-175 (2003) 1-7.   DOI
12 G. Zhang, X. Fan, R. Xu, L. Su, and T.J. Wang, Ceramics International 44 (2018) 12655-12663.   DOI
13 A.G. Evans, D.R. Clarke, and C.G. Levi, Journal of the European Ceramic Society 28 (2008) 1405-1419.   DOI
14 A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Progress in Materials Science 46 (2001) 505-533.   DOI
15 B.-K. Jang, and H. Matsubara, Journal of the European Ceramic Society, 26 (2006) 1585-1590.   DOI
16 K.S. Ravichandran, K. An, R.E. Dutton, and S.L. Semiatin, J. Am. Ceram. Soc. 82 (1999) 673.
17 J. Vetter, G. Barbezat, J. Crummenauer, and J. Avissar, Surface & Coatings Technology 200 (2005) 1962-1968   DOI
18 A. Rabiei and A.G. Evans, Acta Mater. 48 (2000) 3963-3976.   DOI
19 H.B. Guo, S. Kuroda, and H. Murakami, J. Am. Ceram. Soc. 89 (2006) 1432-1439.   DOI
20 F. Zhou, Y. Wang, Z. Cui, L. Wang, J. Gou, Q. Zhang, and C. Wang, Ceramics International 43 (2017) 4102-4111.   DOI
21 X.F. Zhang, K.S. Zhou, M. Liu, C.M. Deng, C.G. Deng, J.B. Song, and X. Tong, Ceramics International 42 (2016) 13969-13975.   DOI
22 K. Van Every, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, and D. Sordelet, J. Therm. Spray. Technol. 20 (2011) 817-828.   DOI
23 A. Guignard, G. Mauer, R. Vassen, and Detlev Stover, J. Therm. Spray Technol. 21 (2012) 416-424.   DOI
24 H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and Detlev Stoever, J. Therm. Spray Technol. 17 (2007) 115-123.
25 B. Roge, A. Fahr, J.S.R. Giguere, and K.I. McRae, ASM International 12[4] (2003) 530-535.
26 R. Ghasemi, and H. Vakilifard, Ceramics International, 43 (2017) 8556-8563.   DOI
27 S. Passoni, F. da S. Borges, L. F. Pires, S. da C. Saab, M. Cooper, Cienc. agrotec. 38 [2] (2014) 122-128.   DOI
28 M. Abdellaoui, and E. Gaffet, Acta metallurgica et Materialia 43 (1994) 1087-1098.
29 N. Markocsan, P. Nylen, J. Wigren, and X.H. Li, Journal of Thermal Spray Technology 16 (2007) 498-505.   DOI
30 R. Srinivasan, R.J. De Angelis, G. Ice, and B.H. Davis, Journal of Materials Research 6 (2011) 1287-1292.
31 M. Rahaman, J. Gross, R. Dutton, and H. Wang, Acta Materialia 54 (2006) 1615-1621.   DOI
32 S. Wall, W. John, H.-c. Wang, and S.L. Goren, Aerosol Science and Technology 12[4] (1990) 926-946.   DOI
33 J. Feng, B. Xiao, R. Zhou, and W. Pan, Scripta Materialia 68 (2013) 727-730.   DOI
34 J. Laskin, and C. Lifshitz, JOURNAL OF MASS SPECTROMETRY 36 (2001) 459-478.   DOI
35 K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Journal of Thermal Spray Technology 20 (2011) 817-828.   DOI