• Title/Summary/Keyword: Y2k

Search Result 329,373, Processing Time 0.164 seconds

INVERTIBLE INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGℒ

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.33 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • Given vectors x and y in a separable complex Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that Ax = y. We show the following : Let Alg$\cal{L}$ be a tridiagonal algebra on a separable complex Hilbert space H and let x = ($x_i$) and y = ($y_i$) be vectors in H. Then the following are equivalent: (1) There exists an invertible operator A = ($a_{kj}$) in Alg$\cal{L}$ such that Ax = y. (2) There exist bounded sequences $\{{\alpha}_n\}$ and $\{{{\beta}}_n\}$ in $\mathbb{C}$ such that for all $k\in\mathbb{N}$, ${\alpha}_{2k-1}\neq0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=\frac{\alpha_{2k}}{{\alpha}_{2k-1}\alpha_{2k+1}}$ and $$y_1={\alpha}_1x_1+{\alpha}_2x_2$$ $$y_{2k}={\alpha}_{4k-1}x_{2k}$$ $$y_{2k+1}={\alpha}_{4k}x_{2k}+{\alpha}_{4k+1}x_{2k+1}+{\alpha}_{4k+2}x_{2k+2}$$.

INVERTIBLE INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONG WAN
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2005
  • Given operators X and Y acting on a separable Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let ${\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$. and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists an invertible operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There exist bounded sequences {${\alpha}_n$} and {${\beta}_n$} in ${\mathbb{C}}$ such that $${\alpha}_{2k-1}{\neq}0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=-\frac{{\alpha}_{2k}}{{\alpha}_{2k-1}{\alpha}_{2k+1}}$$ and $$y_{i1}={\alpha}_1x_{i1}+{\alpha}_2x_{i2}$$ $$y_{i\;2k}={\alpha}_{4k-1}x_{i\;2k}$$ $$y_{i\;2k+1}={\alpha}_{4k}x_{i\;2k}+{\alpha}_{4k+1}x_{i\;2k+1}+{\alpha}_{4k+2}x_{i\;2k+2}$$ for $$k{\in}N$$.

  • PDF

Steam Reforming of Hydrothermal Liquefaction Liquid from Macro Algae over Ni-K2TixOy Catalysts (Ni-K2TixOy 촉매를 이용한 해조류 유래 수열 액화 원료의 수증기 개질 반응 연구)

  • Park, Yong Beom;Lim, Hankwon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.104-112
    • /
    • 2017
  • Hydrogen production via steam reforming of liquefaction liquid from marine algae over hydrothermal liquefaction was carried out at 873 ~ 1073 K with a commercial catalyst and Ni based $K_2Ti_xO_y$ added catalysts. Liquefaction liquid obtained by hydrothermal liquefaction (503 K, 2 h) was used as a reactant and comparison studies for catalytic activity over different catalysts (FCR-4-02, $Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, $Ni/K_2Ti_xO_y-ZrO_2/CeO_2$ and Ni/$K_2Ti_xO_y$-MgO), reaction temperature were performed. Experimental results showed Ni/$K_2Ti_xO_y$ based catalysts ($Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, Ni/$K_2Ti_xO_y-ZrO_2$/ $CeO_2$ and Ni/$K_2Ti_xO_y$-MgO) have a higher activity than commercial catalyst (FCR-4-02) and In particular, a product composition was different depending on support materials. An acidic support ($Al_2O_3$) and a basic support (MgO) led to a higher selectivity for CO while a neutral support ($SiO_2$) and a reducing support ($ZrO_2/CeO_2$) resulted in a higher $CO_2$ selectivity due to water gas shift reaction.

PRODUCT PROPERTIES OF DIGITAL COVERING MAPS

  • HAN SANG EON
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.537-545
    • /
    • 2005
  • The aim of this paper is to solve the open problem on product properties of digital covering maps raised from [5]. Namely, let us consider the digital images $X_1 {\subset}Z^{n_{0}}$ with $k_0-adjacency$, $Y_1{\subset}Z^{n_{1}}$ with $k_3-adjacency$, $X_2{\subset}Z^{n_{2}}$ with $k_2-adjacency$ and $Y_2{\subset}Z^{n_{3}}$ with $k_3-adjacency$. Then the reasonable $k_4-adjacency$ of the product image $X_1{\times}X_2$ is determined by the $k_0-$ and $k_2-adjacency$ and the suitable k_5-adjacency$ is assumed on $Y_1{\times}Y_2$ via the $k_1-$ and $k_3-adjacency$ [3] such that each of the projection maps is a digitally continuous map, e.g., $p_1\;:\;X_1{\times}X_2{\rightarrow}X_1$ is a digitally ($k_4,\;k_1$)-continuous map and so on. Let us assume $h_1\;:\;X_1{\rightarrow}Y_1$ to be a digital $(k_0, k_1)$-covering map and $h_2\;:\;X_2{\rightarrow}Y_2$ to be a digital $(k_2,\;k_3)$-covering map. Then we show that the product map $h_1{\times}h_2\;:\;X_1{\times}X_2{\rightarrow}Y_1{\times}Y_2$ need not be a digital $(k_4,k_5)$-covering map.

A Study on the Solution of Y2K Problem (Y2k 문제 해결 방안)

  • 박민수;최수길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.270-273
    • /
    • 1999
  • Y2k will be able to enormous disaster. The many make an effort to find a solution to problem of Y2k. Problem of Y2k must solution to as follow. First, problem of Y2k solution organization must constructed. Second, in step with each stage-the first, developing and complete stage, stage of Y2k solution must be constructed. Third, solution of Y2k must construct to hierarchy. hierarchy structure constructed form six stage to first stage, first stage is investigation resources, second stage is estimation influence, third stage is planing conversion, fourth stage is working conversion, fifte spot, sixth stage is diffusion on the spot.

  • PDF

A FIXED POINT APPROACH TO THE STABILITY OF THE QUADRATIC AND QUARTIC TYPE FUNCTIONAL EQUATIONS

  • Jin, Sun-Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.337-347
    • /
    • 2019
  • In this paper, we investigate the generalized Hyers-Ulam stability of the quadratic and quartic type functional equations $$f(kx+y)+f(kx-y)-k^2f(x+y)-k^2f(x-y)-2f(kx)\\{\hfill{67}}+2k^2f(x)+2(k^2-1)f(y)=0,\\f(x+5y)-5f(x+4y)+10f(x+3y)-10f(x+2y)+5f(x+y)\\{\hfill{67}}-f(-x)=0,\\f(kx+y)+f(kx-y)-k^2f(x+y)-k^2f(x-y)\\{\hfill{67}}-{\frac{k^2(k^2-1)}{6}}[f(2x)-4f(x)]+2(k^2-1)f(y)=0$$ by using the fixed point theory in the sense of L. $C{\breve{a}}dariu$ and V. Radu.

COMPACT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.447-452
    • /
    • 2005
  • Given operators X and Y on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. Let L be a subspace lattice acting on a separable complex Hilbert space H and Alg L be a tridiagonal algebra. Let X = $(x_{ij})\;and\;Y\;=\;(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a compact operator A = $(x_{ij})$ in AlgL such that AX = Y. (2) There is a sequence {$\alpha_n$} in $\mathbb{C}$ such that {$\alpha_n$} converges to zero and $$y_1\;_j=\alpha_1x_1\;_j+\alpha_2x_2\;_j\;y_{2k}\;_j=\alpha_{4k-1}x_{2k\;j}\;y_{2k+1\;j}=\alpha_{4k}x_{2k\;j}+\alpha_{4k+1}x_{2k+1\;j}+\alpha_{4k+2}x_{2k+2\;j\;for\;all\;k\;\epsilon\;\mathbb{N}$$.

A Study on the Y2K Bug Solution of IBM Compatible PC (IBM 호환 PC에서의 Y2K 문제 해결 방안에 대한 연구)

  • Kim, Soo-In;Lee, Jae-Soo;Park, Lee-Bum
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.115-122
    • /
    • 1999
  • The Y2K bug, what is called "millennium bug" or "2000 year bug", take place because the year after 2000 year is not recognize as the year marking method of the computer designed for take up two-digit number. This takes place because the RTC chip architecture of PC can not change the century information to the operating together with date. In this paper, we make an analysis about Y2K hardware bug of RTC in the IBM compatible PC, and make a Y2K compensation board in order to solve Y2K hardware bug. And the test results by various Y2K diagnosis program is bug before put in Y2K compensation board, but is not bug after put in Y2K compensation board. Therefore, we suggest a solution method for Y2K hardware bug of RTC in the IBM compatible PC.

  • PDF