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ON THE HYERS-ULAM-RASSIAS STABILITY OF AN

ADDITIVE-QUADRATIC-CUBIC FUNCTIONAL

EQUATION

Yang-Hi Lee

Abstract. In this paper, we investigate Hyers-Ulam-Rassias sta-
bility of the functional equation

f(x + ky) − k2 + k

2
f(x + y) + (k2 − 1)f(x) − k2 − k

2
f(x− y)

− f(ky) +
k2 + k

2
f(y) +

k2 − k

2
f(−y) = 0.

1. Introduction

In this paper, let V,W be real vector spaces, X be a real normed
space, Y be a real Banach space, and k be a fixed real number such
that k 6= 0,±1. For a given mapping f : V → W , we use the following
abbreviations:

fo(x) :=
f(x)− f(−x)

2
, fe(x) :=

f(x) + f(−x)

2
,

Af(x, y) :=f(x+ y)− f(x)− f(y),

Qf(x, y) :=f(x+ y) + f(x− y)− 2f(x)− 2f(y),

Cf(x, y) :=f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y),

Dkf(x, y) :=f(x+ ky)− k2 + k

2
f(x+ y) + (k2 − 1)f(x)

− k2 − k
2

f(x− y)− f(ky) +
k2 + k

2
f(y) +

k2 − k
2

f(−y)
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for all x, y ∈ V . Each solution of functional equation Af(x, y) = 0,
Qf(x, y) = 0 and Cf(x, y) = 0 are called an additive mapping, a qua-
dratic mapping and a cubic mapping, respectively. If a mapping can be
expressed by the sum of an additive mapping, a quadratic mapping and
a cubic mapping, then we call the mapping an additive-quadratic-cubic
mapping.

A functional equation is called an additive-quadratic-cubic functional
equation provided that each solution of that equation is an additive-
quadratic-cubic mapping and every additive-quadratic-cubic mapping is
a solution of that equation. M. E. Gordji etc. [3, 5, 6, 8] investigated
the stability of the functional equation

f(x+ ky) + f(x− ky)− k2f(x+ y)− k2f(x− y) + 2(k2 − 1)f(x) = 0

on the various spaces when k is a fixed integer. Each solution of the
above equation can be expressed by the sum of a constant mapping, an
additive mapping, quadratic mapping and a cubic mapping. H.-M. Kim
etc.[10] and Y.-H. Lee etc. [11] investigated the stability of the above
functional equation when k = 2, and M. E. Gordji etc. [7] investigated
the stability of the above functional equation when k = 3.

In 1940, Ulam [14] questioned about the stability of group homomor-
phisms. In 1941, Hyers [9] solved this question for Cauchy functional
equation, which is a partial answer to Ulam’s question. In 1978, Rassias
[13] made Hyers’ result generalized (Refer to Găvruta’s paper [2] for a
more generalized result). The concept of stability used by Rassias is
called ‘Hyers-Ulam-Rassias stability’.

In this paper, we will show that the functional equation Drf(x, y) = 0
is an additive-quadratic-cubic functional equation when r is a rational
number, and also investigate Hyers-Ulam-Rassias stability of that func-
tional equation Dkf(x, y) = 0 for k is a real number.

2. Main theorems

The following theorem is a particular case of Baker’s theorem [1].

Theorem 2.1. (Theorem 1 in [1]) Suppose that V and W are vector
spaces over Q, R or C and α0, β0, . . . , αm, βm are scalars such that αjβl−
αlβj 6= 0 whenever 0 ≤ j < l ≤ m. If fl : V →W for 0 ≤ l ≤ m and

m∑
l=0

fl(αlx+ βly) = 0
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for all x, y ∈ V , then each fl is a “generalized” polynomial mapping of
“degree” at most m− 1.

Baker [1] also states that if f is a “generalized” polynomial mapping

of “degree” at most m−1, then f is expressed as f(x) = x0+
∑m−1

l=1 a∗l (x)
for x ∈ V , where a∗l is a monomial mapping of degree l and x0 ∈ V ,

and f has a property f(rx) = x0 +
∑m−1

l=1 rla∗l (x) for x ∈ V and r ∈ Q.
The monomial mapping of degree 1, 2 and 3 are also called an additive
mapping, a quadric mapping and a cubic mapping, respectively.

Therefore if a mapping f satisfies the functional equation Dkf(x, y) =
0 for all x, y ∈ V , then f is an additive-quadratic-cubic mapping when
k be a real number such that k 6= 0,±1.

Now we will show that the functional equation Drf(x, y) = 0 is an
additive-quadratic-cubic functional equation when r is a rational number
such that r 6= 0,±1.

Theorem 2.2. Let r be a rational number such that r 6= 0,±1. A
mapping f satisfies the functional equation Drf(x, y) = 0 for all x, y ∈ V
if and only if f is an additive-quadratic-cubic mapping.

Proof. If a mapping f : V → W satisfies the functional equation
Drf(x, y) = 0 for all x, y ∈ V , then f is an additive-quadratic-cubic
mapping by Theorem 2.1.

Conversely, assume that f is an additive-quadratic-cubic mapping,
i.e., there exist an additive mapping g, a quadratic mapping f ′ and a
cubic mapping h such that f = g + f ′ + h. Notice that the equalities
g(rx) = rg(x), g(x) = −g(−x), f ′(rx) = r2f ′(x), f ′(x) = f ′(−x),
h(rx) = r3h(x), and h(x) = −h(−x) for all x ∈ V and r ∈ Q. First we
know that Drg(x, y) = 0 follows from the equality

Drg(x, y) = Ag(x, ry) +
r2

2
Ag(x+ y, x− y) +

r

2
Ag(x+ y, y − x)

for all x, y ∈ V . Let us first prove Dnf
′(x, y) = 0 and Dnh(x, y) = 0

when n is a natural number. Using mathematical induction, the equal-
ities Dnf

′(x, y) = 0 and Dnh(x, y) = 0 are obtained from the equalities

D2f
′(x, y) =Qf ′(x+ y, y)−Qf ′(x, y), D2h(x, y) = Ch(x, y),

D3f
′(x, y) =Qf ′(x+ 2y, y) + 2D2f

′(x, y)−Qf ′(x, y),

Dnf
′(x, y) =Qf ′(x+ (n− 1)y, y) + 2Dn−1f

′(x, y)

−Dn−2f
′(x, y)−Qf ′(x, y),

Dnh(x, y) =Dn−1h(x+ y, y) +
n2 − n

2
Ch(x, y)
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for all x, y ∈ V and all n ∈ N. Let us now prove Drf
′(x, y) = 0 and

Drh(x, y) = 0 for any rational number r with r 6= 0,±1. Notice that if
r ∈ Q\{0, 1,−1}, then there exist m,n ∈ N such that r = n

m or r = −n
m .

Since the equalities D n
m
h(x, y) = 0, D−n

m
h(x, y) = 0, D n

m
f ′(x, y) = 0

and D−n
m
f ′(x, y) = 0 are derived from the equalities

D n
m
h(x, y) =Dnh

(
x,
y

m

)
− n2 +mn

2m2
Dmh

(
x,
y

m

)
− n2 −mn

2m2
Dmh

(
x,
−y
m

)
,

D−n
m
h(x, y) =D n

m
h(x,−y),

D n
m
f ′(x, y) =Dnf

′
(
x,
y

m

)
− n2 +mn

2m2
Dmf

′
(
x,
y

m

)
− n2 −mn

2m2
Dmf

′
(
x,
−y
m

)
,

D−n
m
f ′(x, y) =D n

m
f ′(x,−y)

for all x, y ∈ V and n,m ∈ N, we get Drh(x, y) = 0 and Drf
′(x, y) = 0

for all x, y ∈ V . So Drf(x, y) = Drg(x, y) +Drh(x, y) +Drf
′(x, y) = 0

for all x, y ∈ V . �

For a given mapping f : X → Y , let Jnf : X → Y be the mappings
defined by

Jnf(x) :=

4nfe
(
x
2n

)
+ 4·8n−2n

3 fo
(
x
2n

)
− 8n+1−2n+3

3 fo
(

x
2n+1

)
if p > 3,

4nfe
(
x
2n

)
− 2n−1

3

(
fo
(

x
2n−1

)
− 8fo

(
x
2n

))
+ fo(2n+1x)−2fo(2nx)

6·8n if 2 < p < 3,
fe(2nx)

4n − 2n−1

3

(
fo
(

x
2n−1

)
− 8fo

(
x
2n

))
+ fo(2n+1x)−2fo(2nx)

6·8n if 1 < p < 2,
fe(2nx)

4n + 8fo(2nx)−fo(2n+1x)
6·2n + fo(2n+1x)−2fo(2nx)

6·8n if p < 1

for all nonnegative integers n, and let Λf,∆f : X → Y be the mappings
defined by

Λf(x) :=D−2fo(2x,−x) + 3D−2fo(x,−x),

∆f(x) :=
D−2fe(x, x)

2
(2.1)
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when k = −2 and

Λf(x) :=
1

k4 − k2

(
2Dkfo((k − 2)x, x)− 2Dkfo((k + 2)x, x)

+ 2Dkfo(2x, 2x)− 2Dkfo(−2x, 2x)− (k2 + k)Dkfo(3x, x)

+ (k2 − k)Dkfo(−3x, x)− 2(k2 − 1)Dkfo(−2x, x)
)

+
1

(k4 − k2)(k + 2)

(
16Dkfo(x, 2x)− 16Dkfo((k + 1)x, x)

+ 2(k3 − 2k2 − k − 6)Dkfo(2x, x) + (k3 + 11k2 − 6k)Dkfo(−x, x)

+ 16Dkfo(kx, x)− (k3 − 23k2 − 10k − 16)Dkfo(x, x)
)
,

∆f(x) :=
1

4k3 − 4k

(
(k − 2)

[
Dkfe(x, 2x)−Dkfe((k + 1)x, x)

− (k2 + k)/2Dkfe(2x, x)
]
− (k + 2)

[
Dkfe(x,−2x)

−Dkfe((k − 1)x, x)− (k2 − k)/2Dkfe(−2x, x)
]

− 4Dkfe(kx, x) + (2k3 + k2 − k − 2)Dkfe(−x, x)

+ (k3 − 4k2 − 3k + 2)Dkfe(x, x)

)(2.2)

when k 6= 0,±1,−2. By some complicated calculations we can find the
equalities ∆f(x) = fe(2x) − 4fe(x) and Λf(x) = fo(4x) − 10fo(2x) +
16fo(x). Then, by the definition of Jnf and the above equalities, we
know that

Jnf(x)− Jn+1f(x) =


4n∆f

(
x

2n+1

)
+ 4·8n

3 Λf
(

x
2n+2

)
− 2n

3 Λf
(

x
2n+2

)
if p > 3,

4n∆f
(

x
2n+1

)
+ 1

48·8n Λf
(
2nx

)
− 2n−1

3 Λf
(

x
2n+1

)
if 2 < p < 3,

∆f(2nx)
4n+1 + 1

48·8n Λf
(
2nx

)
− 2n−1

3 Λf
(

x
2n+1

)
if 1 < p < 2,

∆f(2nx)
4n+1 + 1

12·2n Λf
(
2nx

)
− 1

48·8n Λf
(
2nx

)
if p < 1

(2.3)

holds for all x ∈ X and all nonnegative integers n. Therefore, together
with the equality f(x) − Jnf(x) =

∑n−1
i=0 (Jif(x) − Ji+1f(x)) for all

x ∈ X, we obtain the following lemma.

Lemma 2.3. If f : X → Y is a mapping such that

Dkf(x, y) = 0
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for all x, y ∈ X, then

Jnf(x) = f(x)

for all x ∈ X and all positive integers n.

From Lemma 2.3, we can prove the following stability theorem.

Theorem 2.4. Let p 6= 1, 2, 3 be a positive real number and let k be
a fixed real number such that p 6= 0,±1,−2. Suppose that f : X → Y
is a mapping such that

‖Dkf(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(2.4)

for all x, y ∈ X. Then there exists a unique solution mapping F of the
functional equation DkF (x, y) = 0 such that

‖f(x)− F (x)‖ ≤



[
K′

2p−4 + K
3·2p
(

4
2p−8 −

1
2p−2

)]
θ‖x‖p if p > 3,[

K′

2p−4 + K
6

(
1

8−2p + 1
2p−2

)]
θ‖x‖p if 2 < p < 3,[

K′

4−2p + K
6

(
1

8−2p + 1
2p−2

)]
θ‖x‖p if 1 < p < 2,[

K′

4−2p + K
6

(
1

2−2p −
1

8−2p

)]
θ‖x‖p if 0 < p < 1

(2.5)

for all x ∈ X, where

K =
1

|k4 − k2||k + 2|

(
|k + 2|

[
2|k − 2|p + 4 + 2|k + 2|p

+ 8 · 2p + |k2 + k|(3p + 1) + |k2 − k|(3p + 1) + 2|k2 − 1|(2p + 1)
]

+ 16(3 + 2p + |k|p + |k + 1|p) + 2|k3 − 2k2 − k − 6|(2p + 1)

+ 2|k3 + 11k2 − 6k|+ 2|k3 − 23k2 − 10k − 16|
)
,

K ′ =
1

4|k3 − k|

(
|k − 2|

[
2 + 2p + |k + 1|p +

|k2 + k|
2

(2p + 1)
]

+ |k + 2|
[
2p + 2 + |k − 1|p +

|k2 − k|
2

(2p + 1)
]

+ 4(|k|p + 1) + 2|2k3 + k2 − k − 2|+ 2|k3 − 4k2 − 3k + 2|
)
.

Proof. Notice that f(0) = 0 is derived from ‖2(k2 − 1)f(0)‖ =
‖Dkf(0, 0)‖ ≤ 0. We can obtan the inequalities

‖Λf(x)‖ ≤Kθ‖x‖p, and ‖∆f(x)‖ ≤ K ′θ‖x‖p(2.6)
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from (2.2) and (2.4). It follows from (2.3) and (2.6) that

‖Jnf(x)− Jn+1f(x)‖

≤



(
4nK′

2(n+1)p + (4·8n−2n)K

3·2(n+2)p

)
θ‖x‖p if p > 3,(

4nK′

2(n+1)p + K2np

6·8n+1 + 2nK
6·2(n+1)p

)
θ‖x‖p if 2 < p < 3,(

K′2np

4n+1 + K2np

6·8n+1 + 2nK
6·2(n+1)p

)
θ‖x‖p if 1 < p < 2,(

K′2np

4n+1 + (4n+1−1)2npK
6·8n+1

)
θ‖x‖p if 0 < p < 1

for all x ∈ X. Together with the equality

Jnf(x)− Jn+mf(x) =

n+m−1∑
i=n

(Jif(x)− Ji+1f(x))

for all x ∈ X, we get that

‖Jnf(x)− Jn+mf(x)‖ ≤(2.7) 

∑n+m−1
i=n

(
4iK′

2(i+1)p + (4·8i−2i)K

3·2(i+2)p

)
θ‖x‖p if p > 3,∑n+m−1

i=n

(
4iK′

2(i+1)p + K2ip

6·8i+1 + 2iK
6·2(i+1)p

)
θ‖x‖p if 2 < p < 3,∑n+m−1

i=n

(
K′2ip

4i+1 + K2ip

6·8i+1 + 2iK
6·2(n+1)p

)
θ‖x‖p if 1 < p < 2,∑n+m−1

i=n

(
K′2ip

4i+1 + (4i+1−1)2ipK
6·8i+1

)
θ‖x‖p if p < 1

for all x ∈ X and n,m ∈ N∪{0}. It follows from (2.7) that the sequence
{Jnf(x)} is a Cauchy sequence for all x ∈ X. Since Y is complete,
the sequence {Jnf(x)} converges for all x ∈ X. Hence we can define a
mapping F : X → Y by

F (x) := lim
n→∞

Jnf(x)

for all x ∈ X. Moreover, letting n = 0 and passing the limit n → ∞ in
(2.7) we get the inequality (2.5). When 2 < p < 3, from the definition
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of F , we easily get

‖DkF (x, y)‖

= lim
n→∞

∥∥∥4nDkfe

( x
2n
,
y

2n

)
+

2n

6

(
−Dkfo

(
2x

2n
,
2y

2n

)
+ 8Dkfo

( x
2n
,
y

2n

))
+
Dkfo

(
2n+1x, 2n+1y

)
− 2Dkfo (2nx, 2ny)

6 · 8n
∥∥∥

≤ lim
n→∞

(
4n

2np
+

2n(2p + 8)

6 · 2np
+

2np(2p + 2)

6 · 8n

)
θ(‖x‖p + ‖y‖p)

=0

for all x, y ∈ X. Also in other cases, p < 1 or 1 < p < 2 or 3 <
p, we can easily see DkF (x, y) = 0 in a similar way. To prove the
uniqueness of F , let F ′ : X → Y be another solution mapping satisfying
(2.5). We may replace the condition (2.5) with a simpler inequality

‖f(x) − F (x)‖ ≤ Kθ‖x‖p
6

(
1

|8−2p| + 1
|2−2p|

)
+ K′θ‖x‖p
|4−2p| . By Lemma 2.3, the

equality F ′(x) = JnF
′(x) holds for all n ∈ N. For the case 1 < p < 2,

we have

‖Jnf(x)− F ′(x)‖
=‖Jnf(x)− JnF ′(x)‖

≤
∥∥∥∥fe(2nx)

4n
− 2n

6

(
fo
(2x

2n
)
− 8fo

( x
2n
))

+
fo(2

n+1x)− 2fo(2
nx)

6 · 8n

− F ′e(2
nx)

4n
+

2n

6

(
F ′o
(2x

2n
)
− 8F ′o

( x
2n
))

+
F ′o(2

n+1x)− 2F ′o(2
nx)

6 · 8n

∥∥∥∥
≤
∥∥∥∥(fe − F ′e)(2nx)

4n

∥∥∥∥+
2n

6

∥∥∥∥(fo − F ′o)
(2x

2n
)∥∥∥∥+

2n+3

6

∥∥∥∥(fo − F ′o)
( x

2n
)∥∥∥∥

+

∥∥∥∥(fo − F ′o)(2n+1x)

6 · 8n

∥∥∥∥+

∥∥∥∥2(fo − F ′o)(2nx)

6 · 8n

∥∥∥∥
≤
(

2np

4n
+

2n−1

3 · 2(n−1)p
+

2n+2

3 · 2np
+

2(n+1)p

3 · 23n+1
+

2np

3 · 23n

)
×(

Kθ‖x‖p

6

( 1

|8− 2p|
+

1

|2− 2p|
)

+
K ′θ‖x‖p

|4− 2p|

)
=
Kθ‖x‖p

6

( 1

|8− 2p|
+

1

|2− 2p|
)

+
K ′θ‖x‖p

|4− 2p|
for all x ∈ X and all positive integer n. Taking the limit in the above
inequality as n→∞, we can conclude that F ′(x) = limn→∞ Jnf(x) for
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all x ∈ X. Also in a different case, 0 < p < 1 or 2 < p < 3 or 3 < p,
we can easily see that F ′(x) = limn→∞ Jnf(x) in a similar way. This
means that F (x) = F ′(x) for all x ∈ X. �

Theorem 2.5. Let p ≤ 0 be a real number. Suppose that f : X → Y
is a mapping satisfying the inequality (2.4) for all x, y ∈ X\{0} and
f(0) = 0. If p = 0, then there exists a unique solution mapping F of the
functional equation DkF (x, y) = 0 such that

‖f(x)− F (x)‖ ≤
[K ′

3
+
K

7

]
θ(2.8)

for all x ∈ X\{0}. If p < 0, then f is s solution of the functional equation
Dkf(x, y) = 0.

Proof. Notice that Dkf(0, 0) = 0 is derived from Dkf(0, 0) = 2(k2−
1)f(0) and f(0) = 0. Notice that (2.6) holds for all x ∈ X\{0}. It
follows from (2.3) and (2.6) that

‖Jnf(x)− Jn+1f(x)‖ ≤
(K ′2np

4n+1
+

(4n+1 − 1)2npK

6 · 8n+1

)
θ‖x‖p

for all x ∈ X\{0}. Together with the equality Jnf(x) − Jn+mf(x) =∑n+m−1
i=n (Jif(x)− Ji+1f(x)) for all x ∈ X, we get

‖Jnf(x)− Jn+mf(x)‖ ≤
n+m−1∑
i=n

(K ′2ip
4i+1

+
(4i+1 − 1)2ipK

6 · 8i+1

)
θ‖x‖p(2.9)

for all x ∈ X\{0} and n,m ∈ N ∪ {0}. It follows from (2.9) that
the sequence {Jnf(x)} is a Cauchy sequence for all x ∈ X\{0}. Since
Y is complete and f(0) = 0, the sequence {Jnf(x)} converges for all
x ∈ X\{0}. Hence we can define a mapping F : X → Y by

F (x) := lim
n→∞

Jnf(x)

for all x ∈ X. Moreover, letting n = 0 and passing the limit n → ∞ in
(2.9) we get the inequality

‖f(x)− F (x)‖ ≤
[ K ′

4− 2p
+

K

(2− 2p)(8− 2p)

]
θ‖x‖p(2.10)
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for all x ∈ X\{0}. In particular, the inequality (2.8) holds for all x ∈
X\{0}. From the definition of F , we easily get

‖DkF (x, y)‖

= lim
n→∞

∥∥∥Dkfe (2nx, 2ny)

4n
+

8Dkfo (2nx, 2ny)−Dkfo
(
2n+1x, 2n+1y

)
6 · 2n

+
Dkfo

(
2n+1x, 2n+1y

)
− 2Dkfo (2nx, 2ny)

6 · 8n
∥∥∥

≤ lim
n→∞

(
2np

4n
+

2np(2p + 8)

6 · 2n
+

2np(2p + 2)

6 · 8n

)
θ(‖x‖p + ‖y‖p)

=0

for all x, y ∈ X\{0}. Also DkF (x, y) = 0 for all x, y ∈ X is derived
from f(0) = 0 and DkF (x, y) = 0 for all x, y ∈ X\{0}. To prove the
uniqueness of F , let F ′ : X → Y be another solution mapping satisfying
(2.10) for all x ∈ X\{0}. By Lemma 2.3, the equality F ′(x) = JnF

′(x)
holds for all n ∈ N. For the case p = 0, we have

‖Jnf(x)− F ′(x)‖
=‖Jnf(x)− JnF ′(x)‖∥∥∥∥fe(2nx)

4n
− F ′e(2

nx)

4n
+

8fo(2
nx)− fo(2n+1x)

6 · 2n
− 8F ′o(2

nx)− F ′o(2n+1x)

6 · 2n

+
fo(2

n+1x)− 2fo(2
nx)

6 · 8n
− F ′o(2

n+1x)− 2F ′o(2
nx)

6 · 8n

∥∥∥∥
≤
(

2np

4n
+

2np(8 + 2p)

6 · 2n
+

2np(2 + 2p)

6 · 8n

)(
K ′

3
+
K

7

)
θ

for all x ∈ X\{0} and all positive integer n. Taking the limit in the above
inequality as n→∞, we can conclude that F ′(x) = limn→∞ Jnf(x) for
all x ∈ X. This means that F (x) = F ′(x) for all x ∈ X.
To show the equality F = f if p < 0, assume that F : X → Y is a
solution mapping of DkF (x, y) = 0 satisfying the condition (2.10) for all
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x ∈ X\{0}. From the equality

Dkf((n+ 1)x, nx)

=Dkf((n+ 1)x, nx)−DkF ((n+ 1)x, nx)

=(f − F )((n+ 1)x+ knx)− k2 + k

2
(f − F )((n+ 1)x+ nx)

+ (k2 − 1)(f − F )((n+ 1)x)− k2 − k
2

(f − F )(x)

− (f − F )(knx) +
k2 + k

2
(f − F )(nx) +

k2 − k
2

(f − F )(−nx)

for all x ∈ X\{0} and n ∈ N, we have the inequality

|k2 − k|
2

‖(f − F )(x)‖

=

∥∥∥∥(f − F )((kn+ n+ 1)x)− k2 + k

2
(f − F )((2n+ 1)x)

+ (k2 − 1)(f − F )((n+ 1)x) +
k2 + k

2
(f − F )(nx)

− (f − F )(knx) +
k2 − k

2
(f − F )(−nx)−Dkf((n+ 1)x, nx)

∥∥∥∥
≤
[(

K ′

4− 2p
+

K

(2− 2p)(8− 2p)

)(
|kn+ n+ 1|p + |kn|p + k2np

+
|k2 + k|

2
(2n+ 1)p + |k2 − 1|(n+ 1)p

)
+ np + (n+ 1)p

]
θ‖x‖p

for all x ∈ X\{0} and n ∈ N. Since np + (n + 1)p and |kn + n + 1|p +

|kn|p + k2np + |k2+k|
2 (2n+ 1)p + |k2 − 1|(n+ 1)p) + (np + (n+ 1)p) tend

to 0 as n→∞, we get f(x) = F (x) for all x ∈ X from f(0) = F (0). �

Using the equalities (2.1), we can show the following theorems in the
same way that we have proved Theorem 2.4 and Theorem 2.5, so the
proof is omitted and described only.

Theorem 2.6. Let p 6= 1, 2, 3 be a positive real number. Suppose
that f : X → Y is a mapping such that

‖D−2f(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(2.11)
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for all x, y ∈ X. Then there exists a unique solution mapping F of the
functional equation D−2F (x, y) = 0 such that

‖f(x)− F (x)‖ ≤
(

1

|2p − 4|
+

2p + 7

|2p − 8||2p − 2|

)
θ‖x‖p

for all x ∈ X.

Theorem 2.7. Let p ≤ 0 be a real number. Suppose that f : X → Y
is a mapping satisfying the inequality (2.11) for all x, y ∈ X\{0} and
f(0) = 0. If p = 0, then there exists a unique solution mapping F of the
functional equation D−2F (x, y) = 0 such that

‖f(x)− F (x)‖ ≤ 31

21
θ

for all x ∈ X\{0}. If p < 0, then f is a solution of the functional
equation D−2f(x, y) = 0.
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