• Title/Summary/Keyword: Xps

Search Result 2,183, Processing Time 0.023 seconds

Study on Passive Layer Characteristics of Chemically Passivated Duplex Stainless Steel (화학적 부동태 처리에 따른 듀플렉스 스테인리스 강의 피막 특성에 관한 연구)

  • Jang, Heui-Un;Lee, Jung-Hoon;Kim, Yong-Hwan;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.219-225
    • /
    • 2012
  • The aim of the present study was to investigate the corrosion resistance and characteristics of passive layer between naturally passivated and chemically passivated duplex stainless steel, UNS S31803 (EN 1.4462) using CPT, XPS, and EIS. The treatment of $HNO_3$(II) and $HNO_3$(III) in ASTM A 967 was applied. In case of chemically passivated specimen, CPT of $HNO_3$(II) and $HNO_3$(III) were higher than that of naturally passivated specimen. In addition, from XPS results, the protectiveness index (Cr/(Fe+Cr)) of chemically passivated specimens was also higher than that of naturally passivated specimen. The reason for this result is considered due to post-cleaning treatment in chemical passivation process, that is, immersion in $Na_2Cr_3O_7$ solution. The fact that $HNO_3$(II) passivation treatment showed the highest film resistance and 'n', which is exponent related with constant phase element (CPE) of passivation film, was in good agreement with results of CPS and XPS. The chemical passivation treatment was an effective method to improve corrosion resistance of duplex stainless steel.

Activity and Characteristics of Cu-Mn Oxide Catalysts Supported on γ-Al2O3 (γ-Al2O3에 담지된 Cu-Mn 산화물 촉매의 활성 및 특성)

  • Kim, Hye-jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.193-199
    • /
    • 2006
  • The catalytic oxidation of toluene over $-Al_2O_3$ supported copper-manganese oxide catalysts in the temperature range of $160-280^{\circ}C$ was investigated by employing a fixed bed flow reactor. The catalysts were characterized by BET, scanning electron microscopy (SEM), temperature-programmed reduction(TPR), temperature-programmed oxidation(TPO), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD) techniques. Catalytic oxidation of toluene was achieved at the below $280^{\circ}C$, and the optimal content of copper and manganese in the catalyst was found to be 15.0 wt%Cu-10.0 wt%Mn. From the TPR/TPO and XPS results, the redox peak of 15 Cu-10 Mn catalyst shifted to the lower temperature, and the binding energy was shifted to the higher binding energy. Furthermore, It is considered that $Cu_{1.5}Mn_{1.5}O_4$ is superior to Mn oxides and CuO in the role as active factor of catalysts from the XRD results and also catalytic activities are dependent on the redox ability and high oxidation state of catalysts.

Study on the Degradation Mechanism of FKM O-ring by X-ray Photoelectron Spectroscopy (X-ray Photoelectron Spectroscopy(XPS) 분석법을 이용한 FKM 오링의 노화 메카니즘 분석 연구)

  • Lee, Jin Hyok;Bae, Jong Woo;Yoon, Yu Mi;Choi, Myung Chan;Jo, Nam-ju
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.168-171
    • /
    • 2017
  • In this study, we observed degradation mechanism of FKM O-ring by X-ray photoelectron spectroscopy(XPS) at atmosphere condition. FKM O-ring had 3.53mm of cross-sectional diameter and 91.67mm of inner diameter. After thermal degradation, oxygen atom concentration of FKM O-ring was increased to 20.39%, and fluorine atom concentration was decreased to 8.29%. We observed that degradation reaction occurred by oxidation reaction. By C1s and F1s peak analysis, we confirmed that oxidation reaction usually occurred at C-F bonding of FKM main chain. Also, carboxyl group(C-OH, C=O, O=C-O) produced by oxidation reaction from O1s peak analysis.

  • PDF

Electrical Characterization and Metal Contacts of ZnO Thin Films Grown by the PLD Method (PLD 방법에 의해서 증착된 ZnO 박막의 전기적 특성 및 접합 특성에 관한 연구)

  • 강수창;신무환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.15-23
    • /
    • 2002
  • In this study, metal/ZnO contacts were thermally annealed at different temperatures (as-dep., 400$^{\circ}C$, 600$^{\circ}C$, 800$^{\circ}C$, 1000$^{\circ}C$) for the investigation of electrical properties, and surface and interface characteristics. The analysis of the element composition and the chemical bonding state of the surface was made by the XPS(X-ray photoelectron spectroscopy). An attempt was made to establish the electrical property-microstructure relationship for the (Ti, Au)/ZnO. The Ti/ZnO contact exhibits an ohmic characteristics with a relatively high contact resistance of 4.74${\times}$10$\^$-1/ $\Omega$$\textrm{cm}^2$ after an annealing at 400$^{\circ}C$. The contact showed a schottky characteristics when the samples were annealed at higher temperature than 400$^{\circ}C$. The transition from the ohmic to schottky characteristics was contributed from the formation of the oxide layers as was confirmed by the peaks for O-O and Ti-O bondings in XPS analysis. For the Au/ZnO contact the lowest contact resistance was obtained from the as-deposited sample. The resistance was slowly increased with annealing temperature up to 600$^{\circ}C$. The ohmic characteristics were maintained eden fort 600$^{\circ}C$ annealing. The XPS analysis showed that the Au-O intensity was dramatically decreased with temperature above 600$^{\circ}C$.

The Analysis on the Effects of Hygrothermal Aging to THPP Using DSC and XPS (DSC와 XPS를 통한 수분노화가 THPP 점화제에 미치는 영향 분석)

  • Oh, Juyoung;Kim, Yoocheon;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.79-92
    • /
    • 2019
  • Titanium hydride potassium perchlorate (THPP) is one of the commonly utilized pyrotechnic materials in aerospace industries. The current study elucidates the effects of hygrothermal aging on the combustion of THPP experimentally. First, applying the Differential Scanning Calorimetry (DSC) and isocoversional method, both the delay of reaction start and decrease in maximum reaction rate were observed. The kinetics parameters tended to fluctuate depending the thermal reaction or intermediate product formation of THPP. Also, the oxidants decomposition and fuel oxidation phenomenon were discovered by X-ray photoelectron spectroscopy (XPS). The experimental heat from DSC data were verified as reasonable by comparing with the theoretical heat obtained utilizing both THPP formulation from XPS and NASA Chemical Equilibrium with Applications (CEA). Both data had identical variation trend, which expecially had the highest heat value at 10 weeks aged sample.

Characteristics of Organic Solar Cell having an Electron Transport Layer co-Deposited with ZnO Metal Oxide and Graphene using the Cyclic Voltammetry Method (순환전류법을 이용해 ZnO 금속산화물과 Graphene을 동시에 제막한 전자수송층을 갖는 유기태양전지의 특성)

  • Ahn, Joonsub;Han, Eunmi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2022
  • Graphene oxide was stirred with a ZnCl2:NaCl electrolyte and electrochemically coated by cyclic voltammetry to simplify the electron transpfer layer film forming process for organic solar cells and to fabricate an organic solar cell having it. The device structure is FTO/ZnO:graphene/P3HT:PCBM/PEDOT:PSS/Ag. Morphology and chemical properties of ETL were confirmed by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. As a result of XPS measurement, ZnO metal oxide and carbon bonding were simultaneously confirmed, and ZnO and graphene peaks were confirmed by Raman spectroscopy. The electrical characteristics of the manufactured solar cell were specified with a solar simulator, and the ETL device coated twice at a rate of 0.05 V/s showed the highest photoelectric conversion efficiency of 1.94%.

Surface modification and induced ultra high surface hardness by nitrogen ion implantation of low alloy steel

  • Olofinjana, A.O.;Bell, J.M.;Chen, Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.157-158
    • /
    • 2002
  • A surface hardenable low alloy carbon steel was implanted with medium energy (20 - 50KeV) $N_2^+$ ions to produced a modified hardened surface. The implantation conditions were varied and are given in several doses. The surface hardness of treated and untreated steels were measured using depth sensing ultra micro indentation system (UMIS). It is shown that the hardness of nitrogen ion implanted steels varied from 20 to 50GPa depending on the implantation conditions and the doses of implantation. The structure of the modified surfaces was examined by X-ray photoelectron spectroscopy (XPS). It was found that the high hardness on the implanted surfaces was as a result of formation of non-equilibrium nitrides. High-resolution XPS studies indicated that the nitride formers were essentially C and Si from the alloy steel. The result suggests that the ion implantation provided the conditions for a preferential formation of C and Si nitrides. The combination of evidences from nano-indentation and XPS, provided a strong evidence for the existence of $sp^3$ type of bonding in a suspected $(C,Si)_xN_y$ stoichiometry. The formation of ultra hard surface from relatively cheap low alloy steel has significant implication for wear resistance implanted low alloy steels.

  • PDF

Analysis of Interfaces and Structures of DLC Films Deposited by FCVA Method (FCVA 방법으로 증착된 DLC 박막의 계면 및 구조분석)

  • Park, Chang-Kyun;Chang, Seok-Mo;Uhm, Hyun-Seok;Seo, Soo-Hyung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.16-19
    • /
    • 2001
  • DLC films are deposited using a modified FCVA system. Carbon amorphous networks, chemical bonding states, $sp^3$ fraction, interfaces, and structures are studied as a function of substrate voltage ($0{\sim}-250V$). The $sp^3$ content in the films is evaluated by analyzing the XPS spectra(C1s). The structural properties of the surface, bulk, and interfacial layers in DLC/Si systems are quantitatively analyzed by employing XRR method. As the substrate voltage is increased, the $sp^3$ fraction is decreased by means of XPS and Raman spectroscopy. In addition, the structural properties (interfacial layer, contamination layer, and sp3 fraction) derived from XPS depth profile are relatively correlated with the XRR results.

  • PDF

Improvement of Interfacial Performances on Insulating and Semi-conducting Silicone Polymer Joint by Plasma-treatment

  • Lee, Ki-Taek;Huh, Chang-Su
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2006
  • In this paper, we investigated the effects of short-term oxygen plasma treatment of semiconducting silicone layer to improve interfacial performances in joints prepared with a insulating silicone materials. Surface characterizations were assessed using contact angle measurement and x-ray photoelectron spectroscopy (XPS), and then adhesion level and electrical performance were evaluated through T-peel tests and electrical breakdown voltage tests of treated semi-conductive and insulating joints. Plasma exposure mainly increased the polar component of surface energy from $0.21\;dyne/cm^2$ to $47\;dyne/cm^2$ with increasing plasma treatment time and then leveled off. Based on XPS analysis, the surface modification can be mainly ascribed to the creation of chemically active functional groups such as C-O, C=O and COH on semi-conductive silicone surface. This oxidized rubber layer is inorganic silica-like structure of Si bound with three to four oxygen atoms ($SiO_x,\;x=3{\sim}4$). The oxygen plasma treatment produces an increase in joint strength that is maximum for 10 min treatment. However, due to brittle property of this oxidized layer, the highly oxidized layer from too much extended treatment could be act as a weak point, decreasing the adhesion strength. In addition, electrical breakdown level of joints with adequate plasma treatment was increased by about $10\;\%$ with model samples of joints prepared with a semi-conducting/ insulating silicone polymer after applied to interface.

Annealing Effects of Gate-insulator on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (게이트절연막의 열처리가 Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 영향)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.365-370
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated on oxidized $n^+$ Si wafers. The thickness of ~30 nm $Al_2O_3$ films were deposited on the oxidized Si wafers by atomic layer deposition, which acted as the gate insulators of ZTO TTFTs. The $Al_2O_3$ films were rapid-annealed at $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$, and $1,000^{\circ}C$, respectively. Active layers of ZTO films were deposited on the $Al_2O_3/SiO_2$ coated $n^+$ Si wafers by rf magnetron sputtering. Mobility and threshold voltage were measured as a function of the rapid-annealing temperature. X-ray photoelectron spectroscopy (XPS) were carried out to observe the chemical bindings of $Al_2O_3$ films. The annealing effects of gate-insulator on the properties of TTFTs were analyzed based on the results of XPS.