Browse > Article
http://dx.doi.org/10.6117/kmeps.2022.29.1.071

Characteristics of Organic Solar Cell having an Electron Transport Layer co-Deposited with ZnO Metal Oxide and Graphene using the Cyclic Voltammetry Method  

Ahn, Joonsub (Energy Convergence Core-Facility, Chonnam National University)
Han, Eunmi (School of Chemical Engineer, Chonnam National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.29, no.1, 2022 , pp. 71-75 More about this Journal
Abstract
Graphene oxide was stirred with a ZnCl2:NaCl electrolyte and electrochemically coated by cyclic voltammetry to simplify the electron transpfer layer film forming process for organic solar cells and to fabricate an organic solar cell having it. The device structure is FTO/ZnO:graphene/P3HT:PCBM/PEDOT:PSS/Ag. Morphology and chemical properties of ETL were confirmed by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. As a result of XPS measurement, ZnO metal oxide and carbon bonding were simultaneously confirmed, and ZnO and graphene peaks were confirmed by Raman spectroscopy. The electrical characteristics of the manufactured solar cell were specified with a solar simulator, and the ETL device coated twice at a rate of 0.05 V/s showed the highest photoelectric conversion efficiency of 1.94%.
Keywords
electron transfer layer; co-deposition; cyclic voltammetry; organic solar cell; photoelectric conversion efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. T. Kissinger, W. R. Heineman, "Laboratory Techniques in Electroanalytical Chemistry," Marcel Dekker, INC., New York, 333 (1996).
2 S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi, and H. Park, "Development of annealing-free, solution-processable inverted organic solar cells with N-doped graphene electrodes using zinc oxide nanoparticles", Nano Lett., 18(2), 1337-1343 (2018).   DOI
3 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, "Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer", Phys. Rev. Lett. 100, 016602 (2008).   DOI
4 A. A. Balandin, S. Ghosh, D. Teweldebrhan, I. Calizo, W. Bao, F. Miao, C. N. Lau, "Extremely high thermal conductivity of graphene: prospects for thermal management applications in silicon nanoelectronics", 2008 IEEE Silicon Nanoelectronics Workshop (2008).
5 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, "Fine structure constant defines visual transparency of graphene", Science, 320(5881), 1308 (2008).   DOI
6 A. K. Geim, and K. S. Novoselov, "The rise of graphene", Nature Materials, 6, 183-191 (2007).   DOI
7 A. J. Bard, L. R. Faulkner, "Electrochemical Methods: Fundamentals and Applications," Wiley, New York, Surface Technology, 20 (1983).
8 J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, "Handbook of X-ray Photoelectron Spectroscopy", Eds. J. Chastain, Perkin-Elmer Corporation, Minnesota, USA (1992).
9 E. Smith, G. Dent, "Modern Raman Spectroscopy: A Practical Approach", John Wiley & Sons, Ltd, England (2005).
10 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, "Ultrahigh Electron Mobility in Suspended Graphene", Solid State Communications, 146(9-10), 351-355 (2008).   DOI