DOI QR코드

DOI QR Code

DSC와 XPS를 통한 수분노화가 THPP 점화제에 미치는 영향 분석

The Analysis on the Effects of Hygrothermal Aging to THPP Using DSC and XPS

  • Oh, Juyoung (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Yoocheon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2018.06.20
  • 심사 : 2018.10.26
  • 발행 : 2019.02.01

초록

Titanium hydride potassium perchlorate (THPP)는 항공우주분야에서 일반적으로 널리 사용되는 불꽃점화장치중 하나이다. 현 연구에서는 THPP에 수분 열 노화를 가했을 때, 연소과정에 끼치는 영향과 변화된 결과들을 실험적으로 밝혀내었다. 우선, Differential Scanning Calorimetry (DSC)와 isoconversional method를 적용하여 노화된 THPP 시료의 반응개시지연 및 최대반응속도의 저하를 확인하였다. 반응속도 파라미터는 첫 번째 반응에서 Viton에 의해 낮아지며 후에 잔류한 $KClO_4$의 영향으로 상승하는 경향을 보였다. 그리고 X-ray photoelectron spectroscopy (XPS)를 통해 노화된 THPP 시료에서 산화제 성분은 감소하고 연료산화효과가 두드러짐을 확인하였다. 또한 NASA Chemical Equilibrium with Applications (CEA)을 사용하여 얻은 이론발열량이 DSC로부터 구한 실험적 발열량과 비슷한 경향을 따르므로 실험적으로 구한 발열량 트렌드가 타당함을 검증할 수 있었다.

Titanium hydride potassium perchlorate (THPP) is one of the commonly utilized pyrotechnic materials in aerospace industries. The current study elucidates the effects of hygrothermal aging on the combustion of THPP experimentally. First, applying the Differential Scanning Calorimetry (DSC) and isocoversional method, both the delay of reaction start and decrease in maximum reaction rate were observed. The kinetics parameters tended to fluctuate depending the thermal reaction or intermediate product formation of THPP. Also, the oxidants decomposition and fuel oxidation phenomenon were discovered by X-ray photoelectron spectroscopy (XPS). The experimental heat from DSC data were verified as reasonable by comparing with the theoretical heat obtained utilizing both THPP formulation from XPS and NASA Chemical Equilibrium with Applications (CEA). Both data had identical variation trend, which expecially had the highest heat value at 10 weeks aged sample.

키워드

과제정보

연구 과제 주관 기관 : National Space Lab, 한국연구재단

참고문헌

  1. Wang, L.Q., Shi, X.J. and Wang, W.J., "The influences of combinative effect of temperature and humidity on the thermal stability of pyrotechnic mixtures containing strontium nitrate as oxidizer", Journal of Thermal Analysis and Calorimetry, Vol. 117, No. 2, pp. 985-992, 2014. https://doi.org/10.1007/s10973-014-3713-7
  2. Brown, S.D., Charsley, E.L., Goodall, S.J., Laye, P.G., Rooney, J.J. and Griffiths, T.T., "Studies on the ageing of a magnesium-potassium nitrate pyrotechnic composition using isothermal heat flow calorimetry and thermal analysis techniques", Thermochimica acta, Vol. 401, No. 1, pp. 53-61, 2003. https://doi.org/10.1016/S0040-6031(03)00055-8
  3. Poulsen, B., Rink, K. and Rink, K., "Modeling the energy release characteristics of THPP based initiators", 46th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, Tennessee, U.S., AIAA 2010-7007, July, 2010.
  4. Sorensen, D.N., Quebral, A.P., Baroody, E.E. and Sanborn, W.B., "Investigation of the thermal degradation of the aged pyrotechnic titanium hydride/potassium perchlorate", Journal of Thermal Analysis and Calorimetry, Vol. 85, No. 1, pp. 151-156, 2006. https://doi.org/10.1007/s10973-005-7365-5
  5. Trache, D. and Khimeche, K., "Study on the influence of ageing on thermal decomposition of double base propellants and prediction of their in use time", Fire and Materials, Vol. 37, No. 4, pp. 328-336, 2013. https://doi.org/10.1002/fam.2138
  6. Kim, Y., Park, J., Kwon. K. and Yoh, J.J., "Characterization of energetic materials using thermal calorimetry", Journal of the Korean Society of Propulstion Engineers, Vol. 20, No. 2, pp. 547-553, 2017.
  7. Bart, F., Guittet, M.J., Henriot, M., Thromat, N., Gautier, M. and Duraud, J.P., "Surface-Analysis of Wide-Gap Insulators with XPS", Journal of Electron Spectroscopy and Related Phenomena, Vol. 69, No. 3, pp. 245-258, 1994. https://doi.org/10.1016/0368-2048(94)02191-2
  8. H.L. Friedman, "Kinetics of thermal degradation of char forming plastics from thermogravimetry. Application to a phenolic plastic", Journal of Polymer Science: Polymer Symposia, Vol. 6, No. 1, pp. 183-195, 1964. https://doi.org/10.1002/polc.5070060121
  9. Dellavedova, M., Pasturenzi, C., Gigante, L. and Lunghi, A., "Kinetic evaluations for the transportation of dangerous chemical compounds", CHEMICAL ENGINEERING, Vol. 26, pp. 585-590, 2012.
  10. Flynn, J.H. and Wall, L.A., "General treatment of the thermogravimetry of polymers", Journal of Research of the National Bureau of Standards, Vol. 70, No. 6, pp. 487-523, 1966. https://doi.org/10.6028/jres.070A.043
  11. Ozawa, T., "A New Method of Analyzing Thermogravimetric Data", Bulletin of the Chemical Society of Japan, Vol. 38, No. 11, pp. 1881-1886, 1965. https://doi.org/10.1246/bcsj.38.1881
  12. American Institute of Aeronautics and Astronautics (AIAA), "Standard: Criteria for Explosive Systems and Devices on Space and Launch Vehicles", AIAA S-113-2005, 2005.
  13. Babar, Z.U.D. and Malik, A.Q., "Accelerated ageing of SR 562 pyrotechnic composition and investigation of its thermo kinetic parameters", Fire and Materials, Vol. 41, No. 2, pp. 131-141, 2017. https://doi.org/10.1002/fam.2371
  14. Guo, S., Wang, Q., Sun, J., Liao, X. and Wang, Z.S., "Study on the influence of moisture content on thermal stability of propellant", Journal of Hazardous and Materials, Vol. 168, No. 1, pp. 536-541, 2009. https://doi.org/10.1016/j.jhazmat.2009.02.073
  15. Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C. and Sbirrazzuoli, N., "ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data", Thermochimica Acta, Vol. 520, No. 1-2, pp. 1-19, 2011. https://doi.org/10.1016/j.tca.2011.03.034
  16. Vyazovkin, S., Chrissafis, K., Di Lorenzo, M.L., Koga, N,. Pijolat, M., Roduit, B., Sbirrazzuoli, N., and Sunol, J.J., "ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations", Thermochimica Acta, Vol. 590, No. 1, pp. 1-23, 2014. https://doi.org/10.1016/j.tca.2014.05.036
  17. Lyon, R.E., Safronava, N., Senese, J. and Stoliarov, S.I., "Thermokinetic model of sample response in nonisothermal analysis", Thermochimica Acta, Vol. 545, No. 1, pp. 82-89, 2012. https://doi.org/10.1016/j.tca.2012.06.034
  18. Shamsipur, M., Pourmortazavi, S.M., Roushani, M. and Miran Beigi, A.A., "Thermal Behavior and Non-Isothermal Kinetic Studies on Titanium Hydride-Fueled Binary Pyrotechnic Compositions", Combustion Science and Technology, Vol. 185, No. 1, pp. 122-133, 2013. https://doi.org/10.1080/00102202.2012.709564
  19. Lu, K.T. and Yang, C.C., "Thermal Analysis Studies on the Slow Propagation Tungsten Type Delay Composition System", Propellants, Explosives, Pyrotechnics, Vol. 33, No. 5, pp. 403-410, 2008. https://doi.org/10.1002/prep.200700287
  20. Rudloff, W.K. and Freeman, E.S., "Catalytic effect of metal oxides on thermal decomposition reactions. II. Catalytic effect of metal oxides on the thermal decomposition of potassium chlorate and potassium perchlorate as detected by thermal analysis methods", The Journal of Physical Chemistry, Vol. 74, No. 18, pp. 3317-3324, 1970. https://doi.org/10.1021/j100712a002
  21. Liu, H., He, P., Feng, J.C. and Cao, J., "Kinetic study on nonisothermal dehydrogenation of TiH2 powders", International Journal of Hydrogen Energy, Vol. 34, No. 7, pp. 3018-3025, 2009. https://doi.org/10.1016/j.ijhydene.2009.01.095
  22. Koch, E.C., "Metal Fluorocarbon Pyrolants IV: Thermochemical and Combustion Behaviour of Magnesium/Teflon/Viton (MTV)", Propellants, explosives, pyrotechnics, Vol. 27, No. 6, pp. 340-351, 2002. https://doi.org/10.1002/prep.200290004
  23. Takabayashi, S., Motomitsu, K. and Takahagi, T., "Qualitative analysis of a diamondlike carbon film by angle-resolved x-ray photoelectron spectroscopy", Journal of Applied Physics, Vol. 101, No. 10, p. 103542, 2007. https://doi.org/10.1063/1.2735416
  24. Zhang, Y.G., Wang, C.M., Liu, Y., Liu, S.P., Xiao, S.F. and Chen, Y.G. "Surface characterizations of TiH2 powders before and after dehydrogenation" Applied Surface Science, Vol. 410, No. 1, pp. 177-185, 2017. https://doi.org/10.1016/j.apsusc.2017.03.077
  25. Gordon, S. and McBride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: I. Analysis," NASA, Cleveland, O.H., U.S.A., NASA RP-1311, 1994.
  26. Chase, M.W., National Institute of S, Technology. NIST-JANAF thermochemical tables, 4th ed., American Institute of Physics for the National Institute of Standards and Technology, Woodbury, N.Y., Thermochemistry Tables, 1998.
  27. Zumdahl S. and DeCoste D.J. Chemical principles, 7th ed., Cengage Learning, 20 Channel Center Street Boston, USA, Ch. 9, 2012.