• 제목/요약/키워드: Xanthomonas oryzae pv. oryzae (Xoo)

검색결과 44건 처리시간 0.025초

벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae)의 병원성 유전자의 분자유전학적 연구현황 및 비교유전체 분석 (Current Status on Molecular Genetic Study and Comparative Genomic Analysis of Virulence Related Genes in Xanthomonas oryzae pv. oryzae)

  • 강희완;박영진;이병무
    • 미생물학회지
    • /
    • 제44권1호
    • /
    • pp.1-9
    • /
    • 2008
  • 본 논문은 벼 흰 잎마름병균인 Xanthomonas oryzae pv. oryzae(Xoo)의 병원성 유전자의 분자유전학적 연구현황을 기술하고자 한다. 또한 국내 고유 벼 흰 잎마름병균 KACC10331의 유전체해독 정보를 기반으로 다른 Xanthomonas의 유전체와 비교 분석함으로써, Xoo의 주요 병원성 유전자의 분자구조를 구명하고자 한다. 이를 통해 Xoo 고유 병원성 유전자 탐색 및 기능 해석을 위한 기초자료를 제공하는데 목적이 있다. Xoo 유전체에는 5개 과(family)에 속하는 9 type의 Insertion sequence(IS)가 611 copy로 존재하고 있으며, 주로 병원성 관련 유전자군 주위에 많이 분포하고 있는 것으로 나타났다. 현재까지 연구가 수행된 주요 병원성 관련 유전자인 hypersensitive response and pathogenicity (hrp) 유전자, extracellular polysaccharide (EPS) 유전자, extracellular enzyme 유전자, lipopolysaccharides (LPS) 유전자, 그리고 avilulence 유전자의 분자유전학적 연구현황을 기술하였다.

Nitrogen Sources Inhibit Biofilm Formation by Xanthomonas oryzae pv. oryzae

  • Ham, Youngseok;Kim, Tae-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2071-2078
    • /
    • 2018
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, which results in severe economic damage to rice farms. Xoo produces biofilms for pathogenesis and survival both inside and outside the host. Biofilms, which are important virulence factors, play a key role in causing the symptoms of Xoo infection. In the present study, we investigated the nutritional conditions for biofilm formation by Xoo. Although Xoo biofilm formation may be initiated by interactions with the host, Xoo biofilm cannot mature without the support of favorable nutritional conditions. Nitrogen sources inhibited Xoo biofilm formation by overwhelming the positive effect that cell growth has on it. However, limited nutrients with low amino acid concentration supported biofilm formation by Xoo in the xylem sap rather than in the phloem sap of rice.

Comparative AFLP Profiles among Strains of Korean Races of Xanthomonas oryzae pv. oryzae.

  • Kang, Mi-Hyung;Lee, Du-Ku;Noh, Tae-Hwan;Shim, Hyeong-Kwon;Na, Seung-Yong;Kim, Jae-Duk
    • Plant Resources
    • /
    • 제7권1호
    • /
    • pp.65-68
    • /
    • 2004
  • We used an amplified fragment length polymorphism (AFLP) analysis, a novel PCR-based technique, to differentiate Xanthomonas oryzae pv. oryzae (Xoo) of Korean races. The 6 strains of Xoo K1, K2, K3 races were tested with 81 AFLP primer combinations to identify the best selective primers. The primer combinations were selected according to their reproducibility, number of polymorphic bands and polymorphism detected among Xoo strains. 18 strains of Xoo K1, K2 and K3 races were analyzed with the selected combinations of primer set. Some primer combinations (Eco R I +1 / Mse I+1) could differentiate Xoo of Korean races that were not distinguished by other fingerprinting analysis. Thus AFLP fingerprinting permitted very fine discrimination among different races.

  • PDF

Mutation in clpxoo4158 Reduces Virulence and Resistance to Oxidative Stress in Xanthomonas oryzae pv. oryzae KACC10859

  • Cho, Jung-Hee;Jeong, Kyu-Sik;Han, Jong-Woo;Kim, Woo-Jae;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • 제27권1호
    • /
    • pp.89-92
    • /
    • 2011
  • Cyclic AMP receptor-like protein (Clp), is known to be a global transcriptional regulator for the expression of virulence factors in Xanthomonas campestris pv. campestris (Xcc). Sequence analysis showed that Xanthomonas oryzae pv. oryzae (Xoo) contains a gene that is strongly homologous to the Xcc clp. In order to determine the role of the Clp homolog in Xoo, a marker exchange mutant of $clp_{xoo4158}$ was generated. Virulence and virulence factors, such as the production of cellulase, xylanase, and extracellular polysaccharides (EPS) and swarming motility were significantly decreased in the $clp_{xoo4158}$ mutant. Moreover, the mutation caused the strain to be more sensitive to hydrogen peroxide and to over-produce siderophores. Complementation of the mutant restored the mutation-related phenotypes. Expression of $clp_{xoo4158}$, assessed by reverse-transcription realtime PCR and clp promoter activity, was significantly reduced in the rpfB, rpfF, rpfC, and rpfG mutants. These results suggest that the clp homolog, $clp_{xoo4158}$, is involved in the control of virulence and resistance against oxidative stress, and that expression of the gene is controlled by RpfC and RpfG through a diffusible signal factor (DSF) signal in Xanthomonas oryzae pv. oryzae KACC10859.

Expression of colSR Genes Increased in the rpf Mutants of Xanthomonas oryzae pv. oryzae KACC10859

  • Noh, Young-Hee;Kim, Sun-Young;Han, Jong-Woo;Seo, Young-Su;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • 제30권3호
    • /
    • pp.304-309
    • /
    • 2014
  • The rpf genes and $colS_{XOO1207}/colR_{XOO1208}$ were known to require for virulence of Xanthomonas oryzae pv. oryzae (Xoo). In Xoo KACC10331 genome, two more colS/colR genes, $colS_{XOO3534}$ (raxH)/$colR_{XOO3535}$ (raxR) and $colS_{XOO3762}/colR_{XOO3763}$ were annotated. The $colS_{XOO3534}/colR_{XOO3535}$ were known to control AvrXa21 activity and functions of $colS_{XOO3762}/colR_{XOO3763}$ were unknown in Xoo. To characterize the relationship between rpf and colS/colR genes, expression of colS/colR genes in Rpf mutants of Xoo were analyzed with quantitative reverse transcription PCR (qRT-PCR). Expressions of all three colS/colR genes increased in the rpfF mutant in which DSF synthesis is defective. Expression of $colS_{XOO1207}/col-R_{XOO1208}$, $colS_{XOO3534}/colR_{XOO3535}$ and $colS_{XOO3762}/colR_{XOO3763}$ increased 2, 2-7, 3-13 folds respectively. Expression of $colS_{XOO3534}$ and $colS_{XOO3762}$ also increased 2-4 folds in the rpfG mutant in which the signal from DSF is no longer transferred to down-stream. Expression of the other colS/colR genes was not significantly changed in the rpfG mutant compared to the wild type. Since RpfF and RpfG are responsible for DSF synthesis and signal transfer from DSF to down-stream to regulate virulence gene expression, these results suggest that the DSF and DSF-mediated signal regulate negatively three colS/colR genes in Xoo.

DNA Microarray and Gene Ontology Enrichment Analysis Reveals That a Mutation in opsX Affects Virulence and Chemotaxis in Xanthomonas oryzae pv. oryzae

  • Kim, Hong-Il;Park, Young-Jin
    • The Plant Pathology Journal
    • /
    • 제32권3호
    • /
    • pp.190-200
    • /
    • 2016
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice (Oryza sativa L.). In this study, we investigated the effect of a mutation in opsX (XOO1056), which encodes a saccharide biosynthesis regulatory protein, on the virulence and bacterial chemotaxis of Xoo. We performed DNA micro-array analysis, which showed that 63 of 2,678 genes, including genes related to bacterial motility (flagellar and chemotaxis proteins) were significantly downregulated ($<\;-2\;log_2$ fold changes) by the mutation in opsX. Indeed, motility assays showed that the mutant strain was nonmotile on semisolid agar swarm plates. In addition, a mutant strain (opsX::Tn5) showed decreased virulence against the susceptible rice cultivar, IR24. Quantitative real-time RT-PCR reaction was performed to confirm the expression levels of these genes, including those related to flagella and chemotaxis, in the opsX mutant. Our findings revealed that mutation of opsX affects both virulence and bacterial motility. These results will help to improve our understanding of Xoo and provide insight into Xoo-rice interactions.

PCR-Based Assay for Rapid and Specific Detection of the New Xanthomonas oryzae pv. oryzae K3a Race Using an AFLP-Derived Marker

  • Song, Eun-Sung;Kim, Song-Yi;Noh, Tae-Hwan;Cho, Heejung;Chae, Soo-Cheon;Lee, Byoung-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.732-739
    • /
    • 2014
  • We describe the development of a polymerase chain reaction method for the rapid, precise, and specific detection of the Xanthomonas oryzae pv. oryzae (Xoo) K3a race, the bacterial blight pathogen of rice. The specific primer set was designed to amplify a genomic locus derived from an amplified fragment length polymorphism specific for the K3a race. The 1,024 bp amplicon was generated from the DNA of 13 isolates of Xoo K3a races out of 119 isolates of other races, pathovars, and Xanthomonas species. The assay does not require isolated bacterial cells or DNA extraction. Moreover, the pathogen was quickly detected in rice leaf 2 days after inoculation with bacteria and at a distance of 8 cm from the rice leaf 5 days later. The results suggest that this PCR-based assay will be a useful and powerful tool for the detection and identification of the Xoo K3a race in rice plants as well as for early diagnosis of infection in paddy fields.

A Genome-Scale Co-Functional Network of Xanthomonas Genes Can Accurately Reconstruct Regulatory Circuits Controlled by Two-Component Signaling Systems

  • Kim, Hanhae;Joe, Anna;Lee, Muyoung;Yang, Sunmo;Ma, Xiaozhi;Ronald, Pamela C.;Lee, Insuk
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.166-174
    • /
    • 2019
  • Bacterial species in the genus Xanthomonas infect virtually all crop plants. Although many genes involved in Xanthomonas virulence have been identified through molecular and cellular studies, the elucidation of virulence-associated regulatory circuits is still far from complete. Functional gene networks have proven useful in generating hypotheses for genetic factors of biological processes in various species. Here, we present a genome-scale co-functional network of Xanthomonas oryze pv. oryzae (Xoo) genes, XooNet (www.inetbio.org/xoonet/), constructed by integrating heterogeneous types of genomics data derived from Xoo and other bacterial species. XooNet contains 106,000 functional links, which cover approximately 83% of the coding genome. XooNet is highly predictive for diverse biological processes in Xoo and can accurately reconstruct cellular pathways regulated by two-component signaling transduction systems (TCS). XooNet will be a useful in silico research platform for genetic dissection of virulence pathways in Xoo.

The Antibiosis Action and Rice-Induced Resistance, Mediated by a Lipopeptide from Bacillus amyloliquefaciens B014, in Controlling Rice Disease Caused by Xanthomonas oryzae pv. oryzae

  • Li, Shu Bin;Xu, Shi Ru;Zhang, Rui Ning;Liu, Yuan;Zhou, Ren Chao
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.748-756
    • /
    • 2016
  • In the present study, a lipopeptide (named AXLP14) antagonistic to Xanthomonas oryzae pv. oryzae (Xoo) was obtained from the culture supernatant of Bacillus amyloliquefaciens B014. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis demonstrated that AXLP14 consisted of surfactin homologs. The minimum inhibition concentration and minimum bactericidal concentration of AXLP14 against Xoo were determined to be 1.25 and 2.50 mg/ml, respectively. At a concentration of 0.613 mg/ml, AXLP14 strongly inhibited the formation of Xoo biofilm. AXLP14 also inhibited the motility of Xoo in a concentration-dependent manner. Applying AXLP14 to rice seedlings significantly reduced the incidence and severity of disease caused by Xoo. In Xoo-infected rice seedlings, AXLP14 strongly and continuously up-regulated the expression of both OsNPR1 and OsWRKY45. In addition, AXLP14 effectively inhibited the Xoo-induced up-regulation of the expression of the abscisic acid biosynthesis gene OsNECD3 and the abscisic acid signalingresponsive gene OsLip9, indicating that AXLP14 may protect rice against Xoo-induced disease by enhancing salicylic acid defense and interfering with the abscisic acid response to virulence.

Homologous Expression and Quantitative Analysis of T3SS-Dependent Secretion of TAP-Tagged XoAvrBs2 in Xanthomonas oryzae pv. oryzae Induced by Rice Leaf Extract

  • Kim, S.H.;Lee, S.E.;Hong, M.K.;Song, N.H.;Yoon, B.;Viet, P.T.;Ahn, Y.J.;Lee, B.M.;Jung, J.W.;Kim, K.P.;Han, Y.S.;Kim, J.G.;Kang, L.W.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권7호
    • /
    • pp.679-685
    • /
    • 2011
  • Xanthomonas oryzae pv. oryzae (Xoo) produces a putative effector, XoAvrBs2. We expressed XoAvrBs2 homologously in Xoo with a TAP-tag at the C-terminus to enable quantitative analysis of protein expression and secretion. Addition of rice leaf extracts from both Xoo-sensitive and Xoo-resistant rice cultivars to the Xoo cells induced expression of the XoAvrBs2 gene at the transcriptional and translational levels, and also stimulated a remarkable amount of XoAvrBs2 secretion into the medium. In a T3SS-defective Xoo mutant strain, secretion of the TAPtagged XoAvrBs2 was blocked. Thus, we elucidated the transcriptional and translational expressions of the XoAvrBs2 gene in Xoo was induced in vitro by the interaction with rice and the induced secretion of XoAvrBs2 was T3SSdependent. It is the first report to measure the homologous expression and secretion of XoAvrBs2 in vitro by rice leaf extract. Our system for the quantitative analysis of effector protein expression and secretion could be generally used for the study of host-pathogen interactions.