Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0403

A Genome-Scale Co-Functional Network of Xanthomonas Genes Can Accurately Reconstruct Regulatory Circuits Controlled by Two-Component Signaling Systems  

Kim, Hanhae (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
Joe, Anna (Department of Plant Pathology and the Genome Center, University of California)
Lee, Muyoung (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
Yang, Sunmo (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
Ma, Xiaozhi (Rice Research Institute, Guangdong Academy of Agricultural Sciences)
Ronald, Pamela C. (Department of Plant Pathology and the Genome Center, University of California)
Lee, Insuk (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
Abstract
Bacterial species in the genus Xanthomonas infect virtually all crop plants. Although many genes involved in Xanthomonas virulence have been identified through molecular and cellular studies, the elucidation of virulence-associated regulatory circuits is still far from complete. Functional gene networks have proven useful in generating hypotheses for genetic factors of biological processes in various species. Here, we present a genome-scale co-functional network of Xanthomonas oryze pv. oryzae (Xoo) genes, XooNet (www.inetbio.org/xoonet/), constructed by integrating heterogeneous types of genomics data derived from Xoo and other bacterial species. XooNet contains 106,000 functional links, which cover approximately 83% of the coding genome. XooNet is highly predictive for diverse biological processes in Xoo and can accurately reconstruct cellular pathways regulated by two-component signaling transduction systems (TCS). XooNet will be a useful in silico research platform for genetic dissection of virulence pathways in Xoo.
Keywords
co-functional network; plant bacterial pathogen; Xanthomonas oryzae pv. oryzae;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hwang, S., Kim, C.Y., Ji, S.G., Go, J., Kim, H., Yang, S., Kim, H.J., Cho, A., Yoon, S.S., and Lee, I. (2016). Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa. Sci. Rep. 6, 26223.   DOI
2 Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457-462.   DOI
3 Kensche, P.R., van Noort, V., Dutilh, B.E., and Huynen, M.A. (2008). Practical and theoretical advances in predicting the function of a protein by its phylogenetic distribution. J. R. Soc. Interface 5, 151-170.   DOI
4 Kim, E., Kim, H., and Lee, I. (2013). JiffyNet: a web-based instant protein network modeler for newly sequenced species. Nucleic Acids Res. 41, W192-197.   DOI
5 Kim, H., Shim, J.E., Shin, J., and Lee, I. (2015). EcoliNet: a database of cofunctional gene network for Escherichia coli. Database (Oxford) 2015, bav001. doi: 10.1093/database/bav001.   DOI
6 Kofoid, E.C., and Parkinson, J.S. (1988). Transmitter and receiver modules in bacterial signaling proteins. P.N.A.S. 85, 4981-4985.   DOI
7 Kuhner, S., van Noort, V., Betts, M.J., Leo-Macias, A., Batisse, C., Rode, M., Yamada, T., Maier, T., Bader, S., Beltran-Alvarez, P., et al. (2009). Proteome organization in a genome-reduced bacterium. Science 326, 1235-1240.   DOI
8 Lee, I., Date, S.V., Adai, A.T., and Marcotte, E.M. (2004). A probabilistic functional network of yeast genes. Science 306, 1555-1558.   DOI
9 Luu, D.D., Joe, A., Chen, Y., Parys, K., Bahar, O., Pruitt, R., Jade G., Chen, L., Petzold, C., Long, K., et al. (2018). Sulfated RaxX, which represents an unclassified group of ribosomally synthesized posttranslationally modified peptides, binds a host immune receptor. bioRxiv, doi: 10.1101/442517.   DOI
10 Mitchell, A., Chang, H.Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S., et al. (2015). The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, D213-221.   DOI
11 Parkinson, N., Aritua, V., Heeney, J., Cowie, C., Bew, J., and Stead, D. (2007). Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2881-2887.   DOI
12 Parrish, J.R., Yu, J., Liu, G., Hines, J.A., Chan, J.E., Mangiola, B.A., Zhang, H., Pacifico, S., Fotouhi, F., DiRita, V.J., et al. (2007). A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol. 8, R130.   DOI
13 Penfold, R.J., and Pemberton, J.M. (1992). An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118, 145-146.   DOI
14 Pruitt, R.N., Joe, A., Zhang, W., Feng, W., Stewart, V., Schwessinger, B., Dinneny, J.R., and Ronald, P.C. (2017). A microbially derived tyrosine sulfated peptide mimics a plant peptide hormone. New Phytol. 215, 725-736.   DOI
15 Pruitt, R.N., Schwessinger, B., Joe, A., Thomas, N., Liu, F., Albert, M., Robinson, M.R., Chan, L.J.G., D., L.D., Chen, H., et al. (2015). The rice immune receptor XA21 recognizes a tyrosine-sulfated peptide from a Gram-negative bacterium. Sci. Adv. 1, e1500245   DOI
16 Rain, J.C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schachter, V., et al. (2001). The protein-protein interaction map of Helicobacter pylori. Nature 409, 211-215.   DOI
17 Sato, S., Shimoda, Y., Muraki, A., Kohara, M., Nakamura, Y., and Tabata, S. (2007). A large-scale protein protein interaction analysis in Synechocystis sp. PCC6803. DNA Res. 14, 207-216.   DOI
18 Shin, J., and Lee, I. (2017). Construction of functional gene networks using phylogenetic profiles. Methods Mol. Biol. 1526, 87-98.   DOI
19 Shim, J.E., Lee, T., and Lee, I. (2017). From sequencing data to gene functions: co-functional network approaches. Animal Cells Syst. 21, 77-83.   DOI
20 Shin, J., and Lee, I. (2015). Co-inheritance analysis within the domains of life substantially improves network inference by phylogenetic profiling. PLoS One 10, e0139006.   DOI
21 Shin, J., Lee, T., Kim, H., and Lee, I. (2014). Complementarity between distance- and probability-based methods of gene neighbourhood identification for pathway reconstruction. Mol. Biosyst. 10, 24-29.   DOI
22 Slater, H., Alvarez-Morales, A., Barber Christine, E., Daniels Michael, J., and Dow, J.M. (2002). A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol. Microbiol. 38, 986-1003.   DOI
23 Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., et al. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804-1806.   DOI
24 Sonnhammer, E.L., and Ostlund, G. (2015). InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 43, D234-239.   DOI
25 Zheng, D., Yao, X., Duan, M., Luo, Y., Liu, B., Qi, P., Sun, M., and Ruan, L. (2016). Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression. Sci. Rep. 6, 22768.   DOI
26 The Gene Ontology Consortium (2015). Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049-1056.   DOI
27 Shim, J.E., and Lee, I. (2016). Weighted mutual information analysis substantially improves domain-based functional network models. Bioinformatics 32, 2824-2830.   DOI
28 Bae, H.J., Lee, H.N., Baek, M.N., Park, E.J., Eom, C.Y., Ko, I.J., Kang, H.Y., and Oh, J.I. (2017). Inhibition of the DevSR two-component system by overexpression of mycobacterium tuberculosis PknB in mycobacterium smegmatis. Mol. Cells 40, 632-642.   DOI
29 Barakat, M., Ortet, P., Jourlin-Castelli, C., Ansaldi, M., Mejean, V., and Whitworth, D.E. (2009). P2CS: a two-component system resource for prokaryotic signal transduction research. BMC Genomics 10, 315.   DOI
30 Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., et al. (2013). NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 41, D991-995.   DOI
31 Hayward, A.C. (1993). The hosts of Xanthomonas. In Xanthomonas., J.G. Swings and E.L. Civerolo, eds. (Chapman & Hall, London), 1-119.
32 Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C.A., Keseler, I.M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L.A., et al. (2016). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 44, D471-480.   DOI
33 Cowen, L., Ideker, T., Raphael, B.J., and Sharan, R. (2017). Network propagation: a universal amplifier of genetic associations. Nat. Rev. Genet. 18, 551-562.   DOI
34 da Silva, F.G., Shen, Y., Dardick, C., Burdman, S., Yadav, R.C., de Leon, A.L., and Ronald, P.C. (2004). Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol. Plant Microbe Interact. 17, 593-601.   DOI
35 Dandekar, T., Snel, B., Huynen, M., and Bork, P. (1998). Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324-328.   DOI
36 Han, S.W., Lee, S.W., Bahar, O., Schwessinger, B., Robinson, M.R., Shaw, J.B., Madsen, J.A., Brodbelt, J.S., and Ronald, P.C. (2012). Tyrosine sulfation in a Gram-negative bacterium. Nat. Commun. 3, 1153-1153.   DOI
37 He, Y.W., and Zhang, L.H. (2008). Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol. Rev. 32, 842-857.   DOI
38 Hoch, J.A. (2000). Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3, 165-170.   DOI
39 Boch, J., and Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol 48, 419-436.   DOI