• 제목/요약/키워드: Xanthomonas axonopodis pv. vesicatoria

검색결과 18건 처리시간 0.032초

대나무 산림토양으로부터 수집한 Streptomyces 속 방선균의 계통학적 다양성 (Biodiversity and Phylogenetic Analysis of Streptomyces Collected from Bamboo Forest Soil)

  • 이효진;황경숙
    • 미생물학회지
    • /
    • 제46권3호
    • /
    • pp.262-269
    • /
    • 2010
  • 국내 자생하는 왕대, 분죽, 조릿대, 호마죽과 같은 다양한 대나무 산림토양의 낙엽층, 부식층, 근권토양 내 방선균 밀도 측정 결과, $2.7{\times}10^6-2.7{\times}10^8$ CFU/g로 계수되었으며, 특히 조릿대 낙엽층 내에는 $2.7{\times}10^8$ CFU/g의 매우 높은 밀도로 분포하였다. 본 연구에서는 대나무림 낙엽층으로부터 100균주, 부식층으로부터 70균주 그리고 근권토양으로부터 160균주로 총 330균주의 방선균을 수집하였다. 이들 분리된 균주들의 기균사, 기중균사 및 색소형성 등을 관찰한 결과 36개 방선균 군집으로 분류되었다. 각 그룹으로부터 대표 방선균 50균주를 선발하여 16S rRNA 유전자 염기서열을 해석하고 계통학적 위치를 검토한 결과, 94%가 Streptomyces 속에 속하였으며, cluster I (2균주), II (35균주), III (6균주), 그리고 IV (7균주)에 속하는 특징을 나타내었다. 대나무 산림토양으로부터 수집된 Streptomyces 속 방선균 50균주를 Shannon-Wiener법에 의해 다양성 지수를 산출한 결과, 대나무림 낙엽층으로부터 수집된 방선균의 다양도는 3.33으로 부식층과 근권토양 보다 높게 나타났으며, 근권토양으로부터 수집된 방선균의 88%가 cluster II에 속하는 특징을 나타내었다. 본 연구에서 수집한 방선균을 Botrytis cinerea, Xanthomonas campestris 그리고 Xanthomonas axonopodis pv. vesicatoria에 대해 항균활성능을 검토한 결과, 각 74균주, 16균주, 25균주 그리고 24균주가 항균활성능을 나타내었다.

Effect of GlycinecinA on the Control of Bacterial Leaf Spot of Red Pepper and Bacterial Leaf Blight of Rice

  • Jeon, Yong-Ho;Moonjae Cho;Cho, Yong-Sup;Ingyu Hwang
    • The Plant Pathology Journal
    • /
    • 제17권5호
    • /
    • pp.249-256
    • /
    • 2001
  • Xanthomonas axonopodis pv. glycines 8ra produces a bacteriocin called glycinecinA, which specifically inhibits the growth of bacteria belonging to Xanthomonas species. GlycinecinA was produced by culturing Escherichia coli DH5 containing biosynthetic genes for glycinecinA, and was tested for its control effect against X. vesicatoria on red pepper and X. oryzae pv. oryzae on rice. The bacteriocin activity was much higher in the cell extract than in the supernatant. It reached a maximum level at the stationary phase, ws maintained up to 2 months at room temperature and approximately 10 months at $4^{\circ}$. The optimum concentration of glycinecinA for the control in the greenhouse and in the field was 12,800 AU/ml. In this study, the activity of glycinecinA on rice and red pepper leaves continued for 7-8 days, during which the pathogen populations remained at low levels. Bacterial leaf spot of red pepper and bacterial leaf blight of rice were significantly reduced by the bacteriocin treatments. The control efficacy was as high as, or even higher than, the chemical treatment of copper hydroxide. These results suggest that the bacteriocin is a potential control agent for bacterial diseases.

  • PDF

Methylome Analysis of Two Xanthomonas spp. Using Single-Molecule Real-Time Sequencing

  • Seong, Hoon Je;Park, Hye-Jee;Hong, Eunji;Lee, Sung Chul;Sul, Woo Jun;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • 제32권6호
    • /
    • pp.500-507
    • /
    • 2016
  • Single-molecule real-time (SMRT) sequencing allows identification of methylated DNA bases and methylation patterns/motifs at the genome level. Using SMRT sequencing, diverse bacterial methylomes including those of Helicobacter pylori, Lactobacillus spp., and Escherichia coli have been determined, and previously unreported DNA methylation motifs have been identified. However, the methylomes of Xanthomonas species, which belong to the most important plant pathogenic bacterial genus, have not been documented. Here, we report the methylomes of Xanthomonas axonopodis pv. glycines (Xag) strain 8ra and X. campestris pv. vesicatoria (Xcv) strain 85-10. We identified $N^6$-methyladenine (6mA) and $N^4$-methylcytosine (4mC) modification in both genomes. In addition, we assigned putative DNA methylation motifs including previously unreported methylation motifs via REBASE and MotifMaker, and compared methylation patterns in both species. Although Xag and Xcv belong to the same genus, their methylation patterns were dramatically different. The number of 4mC DNA bases in Xag (66,682) was significantly higher (29 fold) than in Xcv (2,321). In contrast, the number of 6mA DNA bases (4,147) in Xag was comparable to the number in Xcv (5,491). Strikingly, there were no common or shared motifs in the 10 most frequently methylated motifs of both strains, indicating they possess unique species- or strain-specific methylation motifs. Among the 20 most frequent motifs from both strains, for 9 motifs at least 1% of the methylated bases were located in putative promoter regions. Methylome analysis by SMRT sequencing technology is the first step toward understanding the biology and functions of DNA methylation in this genus.

CaWRKY2, a Chili Pepper Transcription Factor, Is Rapidly Induced by Incompatible Plant Pathogens

  • Oh, Sang-Keun;Yi, So Young;Yu, Seung Hun;Moon, Jae Sun;Park, Jeong Mee;Choi, Doil
    • Molecules and Cells
    • /
    • 제22권1호
    • /
    • pp.58-64
    • /
    • 2006
  • WRKY family proteins are a class of plant-specific transcription factors involved in stress response signaling pathways. In this study a gene encoding a putative WRKY protein was isolated from a pepper EST database (http://genepool.kribb.re.kr). The cDNA, named Capsicum annuum WRKY2 (CaWRKY2), encodes a putative polypeptide of 548 amino acids, containing two WRKY domains with zinc finger motifs and two potential nuclear localization signals. Northern blot analyses showed that CaWRKY2 mRNA was preferentially induced during incompatible interactions of pepper plants with PMMoV, Pseudomonas syringae pv. syringae 61, and Xanthomonas axonopodis pv. vesicatoria race 3. Furthermore, CaWRKY2 transcripts were strongly induced by wounding and ethephon treatment, whereas only moderate expression was detected following treatment with salicylic acid and jasmonic acid. CaWRKY2 was translocated to the nucleus when a CaWRKY2-smGFP fusion construct was expressed in onion epidermal cells. CaWRKY2 also had transcriptional activation activity in yeast. Taken together our data suggest that CaWRKY2 is a pathogen-inducible transcription factor that may have a role in early defense responses to biotic and abiotic stresses.

Assessment of Root-Associated Paenibacillus polymyxa Groups on Growth Promotion and Induced Systemic Resistance in Pepper

  • Phi, Quyet-Tien;Park, Yu-Mi;Seul, Keyung-Jo;Ryu, Choong-Min;Park, Seung-Hwan;Kim, Jong-Guk;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1605-1613
    • /
    • 2010
  • Twenty-nine P. polymyxa strains isolated from rhizospheres of various crops were clustered into five genotypic groups on the basis of BOX-PCR analysis. The characteristics of several plant growth-promoting factors among the isolates revealed the distinct attributes in each allocated group. Under gnotobiotic conditions, inoculation of pepper roots with P. polymyxa isolates significantly increased the biomass in 17 of total 29 treated plants with untreated plants. Experiments on induced systemic resistance (ISR) against bacterial spot pathogen Xanthomonas axonopodis pv. vesicatoria in pepper by P. polymyxa strains were conducted and only one isolate (KNUC265) was selected. Further studies into ISR mediation by the KNUC265 strain against the soft-rot pathogen Erwinia carotovora subsp. carotovora in tobacco demonstrated that the tobacco seedlings exposed to either bacterial volatiles or diffusible metabolites exhibited a reduction in disease severity. In conclusion, ISR and plant growth promotion triggered by P. polymyxa isolates were systemically investigated on pepper for the first time. The P. polymyxa KNUC265 strain, which elicited both ISR and plant growth promotion, could be potentially used in improving the yield of pepper and possibly of other crops.

Priming of Defense-Related Genes Confers Root-Colonizing Bacilli-Elicited Induced Systemic Resistance in Pepper

  • Yang, Jung-Wook;Yu, Seung-Hun;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.389-399
    • /
    • 2009
  • A group of beneficial plant bacteria has been shown to increase crop growth referring to as plant growth-promoting rhizobacteria (PGPR). PGPR can decrease plant disease directly, through the production of antagonistic compounds, and indirectly, through the elicitation of a plant defense response termed induced systemic resistance (ISR). While the mechanism of PGPR-elicited ISR has been studied extensively in the model plant Arabidopsis, it is less well characterized in crop plants such as pepper. In an effort to better understand the mechanism of ISR in crop plants, we investigated the induction of ISR by Bacillus cereus strain BS107 against Xanthomonas axonopodis pv. vesicatoria in pepper leaves. We focused on the priming effect of B. cereus strain BS107 on plant defense genes as an ISR mechanism. Of ten known pepper defense genes that were previously reported to be involved in pathogen defense signaling, the expression of Capsicum annum pathogenesis-protein 4 and CaPR1 was systemically primed by the application of strain BS107 onto pepper roots confirming by quantitative-reverse transcriptase PCR. Our results provide novel genetic evidence of the priming effect of a rhizobacterium on the expression of pepper defense genes involved in ISR.

Two Bacterial Entophytes Eliciting Both Plant Growth Promotion and Plant Defense on Pepper (Capsicum annuum L.)

  • Kang, Seung-Hoon;Cho, Hyun-Soo;Cheong, Hoon;Ryu Choong-Min;Kim, Ji-Hyun;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.96-103
    • /
    • 2007
  • Plant growth-promoting rhizobacteria (PGPR) have the potential to be used as microbial inoculants to reduce disease incidence and severity and to increase crop yield. Some of the PGPR have been reported to be able to enter plant tissues and establish endophytic populations. Here, we demonstrated an approach to screen bacterial endophytes that have the capacity to promote the growth of pepper seedlings and protect pepper plants against a bacterial pathogen. Initially, out of 150 bacterial isolates collected from healthy stems of peppers cultivated in the Chungcheong and Gyeongsang provinces of Korea, 23 putative endophytic isolates that were considered to be predominating and representative of each pepper sample were selected. By phenotypic characterization and partial 16S rDNA sequence analysis, the isolates were identified as species of Ochrobacterium, Pantoea, Pseudomonas, Sphingomonas, Janthinobacterium, Ralstonia, Arthrobacter, Clavibacter, Sporosarcina, Acidovorax, and Brevundimonas. Among them, two isolates, PS4 and PS27, were selected because they showed consistent colonizing capacity in pepper stems at the levels of $10^6-10^7CFU/g$ tissue, and were found to be most closely related to Pseudomonas rhodesiae and Pantoea ananatis, respectively, by additional analyses of their entire 16S rDNA sequences. Drenching application of the two strains on the pepper seedlings promoted significant growth of peppers, enhancing their root fresh weight by 73.9% and 41.5%, respectively. The two strains also elicited induced systemic resistance of plants against Xanthomonas axonopodis pv. vesicatoria.

독도에 서식하는 가지과식물로부터 분리된 근권세균의 특성 (Characterization of Rhizobacteria Isolated from Family Solanaceae Plants in Dokdo Island)

  • 함미선;박유미;성혜리;;류충민;박승환;김사열
    • 한국미생물·생명공학회지
    • /
    • 제37권2호
    • /
    • pp.110-117
    • /
    • 2009
  • 독도에 자생하고 있는 야생 가지과 식물근권세균들의 특성을 밝히기 위해 까마중을 채집하였다. 까마중 근권으로부터 총 44종의 포자형성세균 혹은 질소고정세균을 분리하였다. 이 균주들은 16S rDNA 염기서열을 이용하여 부분 동정하였다. PGPR로써의 특성을 밝히기 위해 옥신 생산능, 인 가용능, 그리고 Siderophore 형성능을 측정하였다. 식물 생장호르몬인 옥신을 형성하는 균주는 19종, 난분해성 인을 분해할 수 있는 균주는 8종, 식물병원균을 억제하는 siderophore를 형성할 수 있는 균주는 13종으로 확인되었다. 우리나라에서 널리 재배되고 있는 가지과식물인 담배와 고추에 직접 적용하여, 식물의 생장 촉진 효과 및 식물 전신유도저항성 효과를 확인하였다. 특히 KUDC1009는 식물의 생장 촉진 효과 그리고 식물병원균에 대한 저항성을 증가시키는 등 다기능의 능력을 가지는 것을 확인할 수 있었다. 독도의 근권세균들은 다양한 스트레스 환경하에서 야생 까마중이 생존하는데 많은 도움을 주는 것을 추측 할 수 있었다.