DOI QR코드

DOI QR Code

Methylome Analysis of Two Xanthomonas spp. Using Single-Molecule Real-Time Sequencing

  • Seong, Hoon Je (Department of Systems Biotechnology, Chung-Ang University) ;
  • Park, Hye-Jee (Department of Integrative Plant Science, Chung-Ang University) ;
  • Hong, Eunji (Department of Life Science (BK21 Program), Chung-Ang University) ;
  • Lee, Sung Chul (Department of Life Science (BK21 Program), Chung-Ang University) ;
  • Sul, Woo Jun (Department of Systems Biotechnology, Chung-Ang University) ;
  • Han, Sang-Wook (Department of Integrative Plant Science, Chung-Ang University)
  • Received : 2016.10.12
  • Accepted : 2016.10.24
  • Published : 2016.12.01

Abstract

Single-molecule real-time (SMRT) sequencing allows identification of methylated DNA bases and methylation patterns/motifs at the genome level. Using SMRT sequencing, diverse bacterial methylomes including those of Helicobacter pylori, Lactobacillus spp., and Escherichia coli have been determined, and previously unreported DNA methylation motifs have been identified. However, the methylomes of Xanthomonas species, which belong to the most important plant pathogenic bacterial genus, have not been documented. Here, we report the methylomes of Xanthomonas axonopodis pv. glycines (Xag) strain 8ra and X. campestris pv. vesicatoria (Xcv) strain 85-10. We identified $N^6$-methyladenine (6mA) and $N^4$-methylcytosine (4mC) modification in both genomes. In addition, we assigned putative DNA methylation motifs including previously unreported methylation motifs via REBASE and MotifMaker, and compared methylation patterns in both species. Although Xag and Xcv belong to the same genus, their methylation patterns were dramatically different. The number of 4mC DNA bases in Xag (66,682) was significantly higher (29 fold) than in Xcv (2,321). In contrast, the number of 6mA DNA bases (4,147) in Xag was comparable to the number in Xcv (5,491). Strikingly, there were no common or shared motifs in the 10 most frequently methylated motifs of both strains, indicating they possess unique species- or strain-specific methylation motifs. Among the 20 most frequent motifs from both strains, for 9 motifs at least 1% of the methylated bases were located in putative promoter regions. Methylome analysis by SMRT sequencing technology is the first step toward understanding the biology and functions of DNA methylation in this genus.

Keywords

References

  1. Bouzar, H., Jones, J. B., Stall, R. E., Hodge, N. C., Minsavage, G. V., Benedict, A. A. and Alvarez, A. M. 1994. Physiological, chemical, serological, and pathogenic analyses of a worldwide collection of Xanthomonas campestris pv. vesicatoria strains. Phytopathology 84:663-671. https://doi.org/10.1094/Phyto-84-663
  2. Buttner, D., Noel, L., Thieme, F. and Bonas, U. 2003. Genomic approaches in Xanthomonas campestris pv. vesicatoria allow fishing for virulence genes. J. Biotechnol. 106:203-214. https://doi.org/10.1016/j.jbiotec.2003.07.012
  3. Camacho, E. M. and Casadesus, J. 2002. Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol. Microbiol. 44:1589-1598. https://doi.org/10.1046/j.1365-2958.2002.02981.x
  4. Casadesus, J. and Low, D. 2006. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70:830-856. https://doi.org/10.1128/MMBR.00016-06
  5. Chae, J. C., Hung, N. B., Yu, S. M., Lee, H. K. and Lee, Y. H. 2014. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice. J. Microbiol. Biotechnol. 24:740-747. https://doi.org/10.4014/jmb.1402.02013
  6. Chin, C. S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E. E., Turner, S. W. and Korlach, J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10:563-569. https://doi.org/10.1038/nmeth.2474
  7. de Jong, A., Pietersma, H., Cordes, M., Kuipers, O. P. and Kok, J. 2012. PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13:299. https://doi.org/10.1186/1471-2164-13-299
  8. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., Dewinter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhongm, F., Korlachm, J. and Turner, S. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133-138. https://doi.org/10.1126/science.1162986
  9. Flusberg, B. A., Webster, D. R., Lee, J. H., Travers, K. J., Olivares, E. C., Clark, T. A., Korlach, J. and Turner, S. W. 2010. Direct detection of DNA methylation during singlemolecule, real-time sequencing. Nat. Methods 7:461-465. https://doi.org/10.1038/nmeth.1459
  10. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L. and Paul, C. L. 1992. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U. S. A. 89:1827-1831. https://doi.org/10.1073/pnas.89.5.1827
  11. Haagmans, W. and van der Woude, M. 2000. Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol. Microbiol. 35:877-887. https://doi.org/10.1046/j.1365-2958.2000.01762.x
  12. Hong, J. K., Sung, C. H., Kim, D. K., Yun, H. T., Jung, W. and Kim, K. D. 2012. Differential effect of delayed planting on soybean cultivars varying in susceptibility to bacterial pustule and wildfire in Korea. Crop Prot. 42:244-249. https://doi.org/10.1016/j.cropro.2012.07.014
  13. Kahramanoglou, C., Prieto, A. I., Khedkar, S., Haase, B., Gupta, A., Benes, V., Fraser, G. M., Luscombe, N. M. and Seshasayee, A. S. 2012. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat. Commun. 3:886. https://doi.org/10.1038/ncomms1878
  14. Kim, J. G., Choi, S., Oh, J., Moon, J. S. and Hwang, I. 2006. Comparative analysis of three indigenous plasmids from Xanthomonas axonopodis pv. glycines. Plasmid 56:79-87. https://doi.org/10.1016/j.plasmid.2006.03.001
  15. Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C. and Salzberg, S. L. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5:R12. https://doi.org/10.1186/gb-2004-5-2-r12
  16. Labrie, S. J., Samson, J. E. and Moineau, S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:317-327. https://doi.org/10.1038/nrmicro2315
  17. Laird, P. W. 2010. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 11:191-203.
  18. Lee, J. H., Shin, H., Park, H. J., Ryu, S. and Han, S. W. 2014. Draft genome sequence of Xanthomonas axonopodis pv. glycines 8ra possessing transcription activator-like effectors used for genetic engineering. J. Biotechnol. 179:15-16. https://doi.org/10.1016/j.jbiotec.2014.03.009
  19. Lee, W. C., Anton, B. P., Wang, S., Baybayan, P., Singh, S., Ashby, M., Chua, E. G., Tay, C. Y., Thirriot, F., Loke, M. F., Goh, K. L., Marshall, B. J., Roberts, R. J. and Vadivelu, J. 2015. The complete methylome of Helicobacter pylori UM032. BMC Genomics 16:424. https://doi.org/10.1186/s12864-015-1585-2
  20. Low, D. A., Weyand, N. J. and Mahan, M. J. 2001. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun. 69:7197-7204. https://doi.org/10.1128/IAI.69.12.7197-7204.2001
  21. Marinus, M. G. and Casadesus, J. 2009. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol. Rev. 33:488-503. https://doi.org/10.1111/j.1574-6976.2008.00159.x
  22. Nou, X., Skinner, B., Braaten, B., Blyn, L., Hirsch, D. and Low, D. 1993. Regulation of pyelonephritis-associated pili phasevariation in Escherichia coli: binding of the Papl and the Lrp regulatory proteins is controlled by DNA methylation. Mol. Microbiol. 7:545-553. https://doi.org/10.1111/j.1365-2958.1993.tb01145.x
  23. Powers, J. G., Weigman, V. J., Shu, J., Pufky, J. M., Cox, D. and Hurban, P. 2013. Efficient and accurate whole genome assembly and methylome profiling of E. coli. BMC Genomics 14:675. https://doi.org/10.1186/1471-2164-14-675
  24. Razin, A. and Riggs, A. D. 1980. DNA methylation and gene function. Science 210:604-610. https://doi.org/10.1126/science.6254144
  25. Roberts, R. J., Vincze, T., Posfai, J. and Macelis, D. 2010. REBASE--a database for DNA restriction and modification:enzymes, genes and genomes. Nucleic Acids Res. 38:D234-D236. https://doi.org/10.1093/nar/gkp874
  26. Ryan, R. P., Vorholter, F. J., Potnis, N., Jones, J. B., Van Sluys, M. A., Bogdanove, A. J. and Dow, J. M. 2011. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat. Rev. Microbiol. 9:344-355. https://doi.org/10.1038/nrmicro2558
  27. Sanchez-Romero, M. A., Cota, I. and Casadesus, J. 2015. DNA methylation in bacteria: from the methyl group to the methylome. Curr. Opin. Microbiol. 25:9-16. https://doi.org/10.1016/j.mib.2015.03.004
  28. Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-2069. https://doi.org/10.1093/bioinformatics/btu153
  29. Skarstad, K. and Katayama, T. 2013. Regulating DNA replication in bacteria. Cold Spring Harb. Perspect. Biol. 5:a012922.
  30. Thieme, F., Koebnik, R., Bekel, T., Berger, C., Boch, J., Buttner, D., Caldana, C., Gaigalat, L., Goesmann, A., Kay, S., Kirchner, O., Lanz, C., Linke, B., McHardy, A. C., Meyer, F., Mittenhuber, G., Nies, D. H., Niesbach-Klosgen, U., Patschkowski, T., Ruckert, C., Rupp, O., Schneiker, S., Schuster, S. C., Vorholter, F. J., Weber, E., Puhler, A., Bonas, U., Bartels, D. and Kaiser, O. 2005. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187:7254-7266. https://doi.org/10.1128/JB.187.21.7254-7266.2005
  31. Varela-alvarez, E., Andreakis, N., Lago-Leston, A., Pearson, G. A., Serrao, E. A., Procaccini, G., Duarte, C. M. and Marba, M. 2006. Genomic DNA isolation from green and brown algae (caulerpales and fucales) for microsatellite library construction. J. Phycol. 42:741-745. https://doi.org/10.1111/j.1529-8817.2006.00218.x
  32. Wengelnik, K. and Bonas, U. 1996. HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 178:3462-3469. https://doi.org/10.1128/jb.178.12.3462-3469.1996
  33. Yu, Y. J. and Yang, M. T. 2007. A novel restriction-modification system from Xanthomonas campestris pv. vesicatoria encodes a m4C-methyltransferase and a nonfunctional restriction endonuclease. FEMS Microbiol. Lett. 272:83-90. https://doi.org/10.1111/j.1574-6968.2007.00738.x
  34. Zautner, A. E., Goldschmidt, A. M., Thurmer, A., Schuldes, J., Bader, O., Lugert, R., Gross, U., Stingl, K., Salinas, G. and Lingner, T. 2015. SMRT sequencing of the Campylobacter coli BfR-CA-9557 genome sequence reveals unique methylation motifs. BMC Genomics 16:1088. https://doi.org/10.1186/s12864-015-2317-3
  35. Zhang, W., Sun, Z., Menghe, B. and Zhang, H. 2015. Short communication: Single molecule, real-time sequencing technology revealed species- and strain-specific methylation patterns of 2 Lactobacillus strains. J. Dairy Sci. 98:3020-3024. https://doi.org/10.3168/jds.2014-9272
  36. Zhu, L., Zhong, J., Jia, X., Liu, G., Kang, Y., Dong, M., Zhang, X., Li, Q., Yue, L., Li, C., Fu, J., Xiao, J., Yan, J., Zhang, B., Lei, M., Chen, S., Lv, L., Zhu, B., Huang, H. and Chen, F. 2016. Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio singlemolecule real-time (SMRT) technology. Nucleic Acids Res. 44:730-743. https://doi.org/10.1093/nar/gkv1498

Cited by

  1. spp. Cultured in Minimal and Rich Media vol.17, pp.23-24, 2017, https://doi.org/10.1002/pmic.201700142
  2. N6-Methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34559-5
  3. The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated Adenines vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-30620-5
  4. Functional characterization of a putative DNA methyltransferase, EadM, in Xanthomonas axonopodis pv. glycines by proteomic and phenotypic analyses vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-38650-3