Browse > Article

Two Bacterial Entophytes Eliciting Both Plant Growth Promotion and Plant Defense on Pepper (Capsicum annuum L.)  

Kang, Seung-Hoon (Laboratory of Microbial Genomics, Systems Microbiology Research Center, KRIBB)
Cho, Hyun-Soo (Laboratory of Microbial Genomics, Systems Microbiology Research Center, KRIBB)
Cheong, Hoon (Laboratory of Microbial Genomics, Systems Microbiology Research Center, KRIBB)
Ryu Choong-Min (Laboratory of Microbial Genomics, Systems Microbiology Research Center, KRIBB)
Kim, Ji-Hyun (Laboratory of Microbial Genomics, Systems Microbiology Research Center, KRIBB)
Park, Seung-Hwan (Laboratory of Microbial Genomics, Systems Microbiology Research Center, KRIBB)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 96-103 More about this Journal
Abstract
Plant growth-promoting rhizobacteria (PGPR) have the potential to be used as microbial inoculants to reduce disease incidence and severity and to increase crop yield. Some of the PGPR have been reported to be able to enter plant tissues and establish endophytic populations. Here, we demonstrated an approach to screen bacterial endophytes that have the capacity to promote the growth of pepper seedlings and protect pepper plants against a bacterial pathogen. Initially, out of 150 bacterial isolates collected from healthy stems of peppers cultivated in the Chungcheong and Gyeongsang provinces of Korea, 23 putative endophytic isolates that were considered to be predominating and representative of each pepper sample were selected. By phenotypic characterization and partial 16S rDNA sequence analysis, the isolates were identified as species of Ochrobacterium, Pantoea, Pseudomonas, Sphingomonas, Janthinobacterium, Ralstonia, Arthrobacter, Clavibacter, Sporosarcina, Acidovorax, and Brevundimonas. Among them, two isolates, PS4 and PS27, were selected because they showed consistent colonizing capacity in pepper stems at the levels of $10^6-10^7CFU/g$ tissue, and were found to be most closely related to Pseudomonas rhodesiae and Pantoea ananatis, respectively, by additional analyses of their entire 16S rDNA sequences. Drenching application of the two strains on the pepper seedlings promoted significant growth of peppers, enhancing their root fresh weight by 73.9% and 41.5%, respectively. The two strains also elicited induced systemic resistance of plants against Xanthomonas axonopodis pv. vesicatoria.
Keywords
Pseudomonas rhodesiae; Pantoea ananatis; bacterial endophyte; plant growth-promoting rhizobacteria; induced systemic resistance; pepper;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 13  (Related Records In Web of Science)
연도 인용수 순위
1 Bottini, R., F. Cassan, and P. Piccoli. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65: 497-503
2 Cao, L., Z. Qiu, J. You, H. Tan, and S. Zhou. 2004. Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett. Appl. Microbiol. 39: 425-430   DOI   ScienceOn
3 Compant, S., B. B. Reiter, A. Sessitsch, J. Nowak, C. Clement, and E. Ait Barka. 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71: 1685-1693   DOI   ScienceOn
4 Heil, M., A. Hilpert, W. Kaiser, and K. E. Linsenmair. 2000. Reduced growth and seed set following chemical induction of pathogen defence: Does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88: 645-654   DOI   ScienceOn
5 James E. K. and F. L. Olivares. 1998. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit. Rev. Plant Sci. 17: 77-119   DOI   ScienceOn
6 Kloepper, J. W., C.-M. Ryu, and. S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266   DOI   ScienceOn
7 Lee, H. J., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. Hwangbo, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079   과학기술학회마을
8 Ryu, C.-M., M. A. Farag, C.-H. Hu, M. S. Reddy, H. X. Wei, P. W. Pare, and J. W. Kloepper. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 4927-4932
9 Ryu, C.-M., J. Kim, O. Choi, S. H. Kim, and C. S. Park. 2006. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol. Control (in press)
10 Sessitsch, A., B. Reiter, and G. Berg. 2004. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can. J. Microbiol. 50: 239-249   DOI   ScienceOn
11 Zheng, H. Z., Y. W. Kim, H. J. Lee, R. D. Park, W. J. Jung, Y. C. Kim, S. H. Lee, T. H. Kim, and K. Y. Kim. 2004. Quantitative changes of PR proteins and antioxidative enzymes in response to Glomus intraradices and Phytophthora capsici in pepper (Capsicum annuum L.) plants. J. Microbiol. Biotechnol. 14: 553-562
12 Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31: 1847-1852   DOI   ScienceOn
13 Wei, G., J. W. Kloepper, and S. Tuzun. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512   DOI
14 Hwang, B. K. and C. H. Kim. 1995. Phytophthora blight of pepper and its control in Korea. Plant Dis. 79: 221-227   DOI
15 Lucas Garcia, J. A., M. Schloter, T. Durkaya, A. Hartmann, and F. J. Gutierrez Manero. 2003. Colonization of pepper roots by a plant growth promoting Pseudomonas fluorescens strain. Biol. Fertil. Soils 6: 381-385
16 Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
17 Jetiyanon, K. and J. W. Kloepper. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Contr. 24: 285-291   DOI   ScienceOn
18 Kuklinsky-Sobral, J., W. L. Araujo, R. Mendes, O. I. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6: 1244-1251   DOI   ScienceOn
19 Pernezny, K. L., P. D. Roberts, J. F. Murphy, and N. P. Goldberg. 2003. Compendium of Pepper Diseases. 1st Ed. APS Press, St. Paul, MN, U.S.A
20 Glick, B. R. 1999. Overview of plant growth-promoting bacteria, pp. 1-13. In B. R. Glick, C. L. Patten, G. Holguin, and D. M. Penrose (eds.), Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press, London
21 Handelsman, J. and K. Stabb. 1996. Biocontrol of soil-borne plant pathogens. Plant Cell 8: 1855-1869   DOI   ScienceOn
22 Kloepper, J. W. and M. N. Schroth. 1978. Plant growthpromoting rhizobacteria on radishes, pp. 879-882. In Station de pathologie vegetale et phyto-bacteriologie (ed.), Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, vol. II. Gilbert-Clarey, Tours
23 Kloepper, J. W. and C.-M. Ryu. 2006. Bacterial endophytes as elicitors of induced systemic resistance, pp. 33-52. In B. Schulz, C. Boyle, and T. Sieber (eds.), Microbial Root Endophytes. Kluwer Inc
24 Krechel, A., A. Faupel, J. Hallmann, A. Ulrich, and G. Berg. 2002. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plantparasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can. J. Microbiol. 48: 772-786   DOI   ScienceOn
25 Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117   DOI   ScienceOn
26 Heil, M. and I. Baldwin. 2002. Costs of induced resistance: Emerging experimental support for a slippery concept. Trend. Plant Sci. 7: 61-67   DOI   ScienceOn
27 Chung, E., C.-M. Ryu, S.-K. Oh, R. N. Kim, J. M. Park, H. S. Cho, S. Lee, J. S. Moon, S.-H. Park, and D. Choi. 2006. Suppression of pepper SGT1 and SKP1 causes severe retardation of plant growth and compromises basal resistance. Physiol. Plant. 126: 605-617
28 Downing, K. J., G. Leslie, and J. A. Thomson. 2000. Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl. Environ. Microbiol. 66: 2804-2810   DOI   ScienceOn
29 Compant, S., B. J. Nowak, C. Clement, and E. Ait Barka. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959   DOI   ScienceOn
30 Emmert, E. A. and J. Handelsman. 1999. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol. Lett. 171: 1-9   DOI   ScienceOn
31 Ryu, C.-M., J. F. Murphy, K. S. Mysore, and J. W. Kloepper. 2004. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J. 39: 381-392   DOI   ScienceOn
32 Ryu, C.-M., M. Farag, C.-H. Hu, M. S. Reddy, P. Pare, and J. W. Kloepper. 2004. Bacterial volatiles induced systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026   DOI   ScienceOn
33 Garbeva, P., L. S. Overbeek, J. W. van Vuurde, and J. D. van Elsas. 2001. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb. Ecol. 41: 369-383   DOI
34 Kloepper, J. W., R. Rodriguez-Kabana, G. W. Zehnder, J. Murphy, E. Sikora, and C. Fernandez. 1999. Plant rootbacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Austral. J. Plant Pathol. 28: 27-33   DOI   ScienceOn
35 Cheong, H., S.-Y. Park, C.-M. Ryu, J. F. Kim, S.-H. Park, and C. S. Park. 2005. Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. J. Microbiol. Biotechnol. 15: 1286-1298   과학기술학회마을
36 Reiter, B., U. Pfeifer, H. Schwab, and A. Sessitsch. 2002. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl. Environ. Microbiol. 68: 2261-2268   DOI   ScienceOn
37 Oh, S.-K., S. Lee, E. Chung, J. M. Park, S. H. Yu, C.-M. Ryu, and D. Choi. 2006. Insight into Types I and II nonhost resistance using expression patterns of defense-related genes in tobacco. Planta 223: 1101-1107   DOI   ScienceOn
38 Ryu, C.-M., J. Kim, O. Choi, S.-Y. Park, S.-H. Park, and C. S. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 12: 984-991   과학기술학회마을
39 Van Loon, L. C., P. A. Bakker, and C. M. Pierterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopath. 36: 453-483   DOI   ScienceOn
40 Hallmann, J., A. Quadt-Hallmann, W. G. Miller, R. A. Sikora, and S. E. Lindow. 2001. Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91: 415- 422   DOI   ScienceOn
41 Kloepper, J. W. 1992. Plant growth-promoting rhizobacteria as biological control agents, pp. 255-274. In F. B. Metting Jr. (ed.), Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., N.Y
42 Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407   DOI   ScienceOn
43 Chanway, C. P. 1997. Introduction of tree roots with plant growth promoting soil bacteria: An emerging technology for reforestation. Forest Sci. 43: 99-112
44 Kloepper, J. W., S. Tuzun, and J. Kuc. 1992. Proposed definitions related to induced disease resistance. Biocontrol Sci. Technol. 2: 349-351   DOI
45 Ryu, C.-M., C.-H. Hu, M. S. Reddy, and J. W. Kloepper. 2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160: 413-420   DOI   ScienceOn
46 Halmann, J., A. Quadt-Hallmann, and J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895-914   DOI   ScienceOn
47 Kim, J. S., S. W. Kwon, F. Jordan, and J. C. Ryu. 2003. Analysis of bacterial community structure in bulk soil, rhizosphere soil, and root samples of hot pepper plants using FAME and 16S rDNA clone libraries. J. Microbiol. Biotechnol. 13: 236-242
48 Zinniel, D. K., P. Lambrecht, N. B. Harris, Z. Feng, D. Kuczmarski, P. Higley, C. A. Ishimaru, A. Arunakumari, R. G. Barletta, and A. K. Vidaver. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68: 2198-2208   DOI   ScienceOn
49 Dickie, G. A. and C. R. Bell. 1995. A full factorial analysis of nine factors influencing in vitro antagonistic screens for potential biocontrol agents. Can. J. Microbiol. 41: 284- 293   DOI   ScienceOn