Browse > Article
http://dx.doi.org/10.4014/jmb.1007.07014

Assessment of Root-Associated Paenibacillus polymyxa Groups on Growth Promotion and Induced Systemic Resistance in Pepper  

Phi, Quyet-Tien (Department of Microbiology, Kyungpook National University)
Park, Yu-Mi (Department of Microbiology, Kyungpook National University)
Seul, Keyung-Jo (Department of Microbiology, Kyungpook National University)
Ryu, Choong-Min (Laboratory of Microbial Genomics, Industrial Biotechnology and Bioenergy Research Center, KRIBB)
Park, Seung-Hwan (Laboratory of Microbial Genomics, Industrial Biotechnology and Bioenergy Research Center, KRIBB)
Kim, Jong-Guk (Department of Microbiology, Kyungpook National University)
Ghim, Sa-Youl (Department of Microbiology, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.12, 2010 , pp. 1605-1613 More about this Journal
Abstract
Twenty-nine P. polymyxa strains isolated from rhizospheres of various crops were clustered into five genotypic groups on the basis of BOX-PCR analysis. The characteristics of several plant growth-promoting factors among the isolates revealed the distinct attributes in each allocated group. Under gnotobiotic conditions, inoculation of pepper roots with P. polymyxa isolates significantly increased the biomass in 17 of total 29 treated plants with untreated plants. Experiments on induced systemic resistance (ISR) against bacterial spot pathogen Xanthomonas axonopodis pv. vesicatoria in pepper by P. polymyxa strains were conducted and only one isolate (KNUC265) was selected. Further studies into ISR mediation by the KNUC265 strain against the soft-rot pathogen Erwinia carotovora subsp. carotovora in tobacco demonstrated that the tobacco seedlings exposed to either bacterial volatiles or diffusible metabolites exhibited a reduction in disease severity. In conclusion, ISR and plant growth promotion triggered by P. polymyxa isolates were systemically investigated on pepper for the first time. The P. polymyxa KNUC265 strain, which elicited both ISR and plant growth promotion, could be potentially used in improving the yield of pepper and possibly of other crops.
Keywords
Paenibacillus polymyxa; ISR; PGPR; Xanthomonas axonopodis; Erwinia carotovora;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, J. W. Kloepper, and P. W. Pare. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026.   DOI   ScienceOn
2 Meziane, H., I. Van der Sluis, L. C. Van Loon, M. Hofte, and P. A. H. M. Bakker. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6: 177-185.   DOI   ScienceOn
3 Poly, F., L. Jocteur-Monrozier, and R. Bally. 2001. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 152: 95-103.   DOI   ScienceOn
4 Van Peer, R., G. J. Niemann, and B. Schippers. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81: 728-734.   DOI
5 Mavingui, P. and T. Heulin. 1994. In vitro chitinase antifungal activity of soil, rhizosphere and rhizoplane populations of Bacillus polymyxa. Soil Biol. Biochem. 26: 801-803.   DOI   ScienceOn
6 Singh, H. P. and T. A. Singh. 1993. The interaction of rock phosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza 4: 37-43.   DOI
7 Timmusk, S. and E. G. H. Wagner. 1999. The plant-growthpromoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Mol. Plant Microb. Interact. 2: 951-959.
8 Van Loon, L. C. and B. R. Glick. 2004. Increased plant fitness by rhizobacteria, pp. 177-205. In H. Sandermann (eds.). Molecular Ecotoxicology of Plants. Springer-Verlag, Berlin Heidelberg.
9 Ryu, C. M., C. H. Hu, M. S. Reddy, and J. W. Kloepper. 2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160: 413-420.   DOI   ScienceOn
10 Ryu, C. M., J. Kim, O. Choi, S. H. Kim, and C. S. Park. 2006. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol. Control 39: 282-289.   DOI   ScienceOn
11 Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473-497.   DOI
12 Perez-Miranda, S., N. Cabirol, R. George-Tellez, L. S. Zamudio-Rivera, and F. J. Fernandez. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Methods 70: 127-131.   DOI   ScienceOn
13 Leeman, M., F. M. Den Ouden, J. A. Van Pelt, F. P. M. Dirkx, H. Steijl, P. A. H. M. Bakker, and B. Schippers. 1996. Iron availability affects induction of systemic resistance against Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86: 149-155.   DOI
14 Phi, Q. T., S. H. Oh, Y. M. Park, S. H. Park, C. M. Ryu, and S. Y. Ghim. 2008. Isolation and characterization of transposoninsertional mutants from Paenibacillus polymyxa E681 altering the biosynthesis of indole-3-acetic acid. Curr. Microbiol. 56: 524-530.   DOI   ScienceOn
15 Lebuhn, M., T. Heulin, and A. Hartmann. 1997. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol. Ecol. 22: 325-334.   DOI   ScienceOn
16 Leeman, M., J. A. Van Pelt, F. M. Den Ouden, M. Heinsbroek, P. A. H. M. Bakker, and B. Schippers. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85: 1021-1027.   DOI   ScienceOn
17 Krause, M. S., T. J. J. De Ceuster, S. M. Tiquia, F. C. J. Michel, L. V. Madden, and H. A. J. Hoitink. 2003. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 93: 1292-1300.   DOI   ScienceOn
18 Marwoto, B., Y. Nakashimada, T. Kakizono, and N. Nishio. 2002. Enhancement of (R,R)-2,3-butanediol production from xylose by Paenibacillus polymyxa at elevated temperatures. Biotechnol. Lett. 24: 109-114.   DOI   ScienceOn
19 Heulin, T., O. Berge, P. Mavingui, L. Gouzou, K. P. Hebbar, and J. Balandreau. 1994. Bacillus polymyxa and Rahnella aquatilis, the dominant $N_{2}$-fixing bacteria associated with wheat rhizosphere in French soils. Eur. J. Soil Biol. 30: 35-42.
20 Kang, S. H., H. S. Cho, H. Cheong, C. M. Ryu, J. H. Kim, and S. H. Park. 2007. Two bacterial endophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J. Microbiol. Biotechnol 17: 96-103.   과학기술학회마을
21 El-Meleigi, M. A., Z. M. Hassan, and G. H. Ibrahim. 2007. Biological control of common root rot of spring wheat by coating seeds with Bacillus or Trichoderma spp. JKAU-Meteorol. Environ. Arid Land Agric. Sci. 18: 3-12.
22 Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796.
23 Cheong, H., S. Y. Park, C. M. Ryu, J. H. F. Kim, S. H. Park, and C. S. Park. 2005. Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. J. Microbiol. Biotechnol. 15: 1286-1298.   과학기술학회마을
24 Helbig, J. 2001. Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J. Phytophathol. 149: 265-273.   DOI   ScienceOn
25 Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 Bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test; proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253-260.
26 Brewer, M. T. and R. P. Larkin. 2005. Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protect. 24: 939-950.   DOI   ScienceOn