• Title/Summary/Keyword: XRD and FT-IR

Search Result 582, Processing Time 0.027 seconds

Synthesis and Characteristic of ${\epsilon}$-type Copper Phthalocyanine Used as Color Filter in LCD Panel (입실론 프탈로시아닌의 합성 및 특성에 대한 연구)

  • Kim, Jae Hwan;Kim, Song Hyuk;Kim, Seong Jin;Hong, Seong-Soo;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.138-142
    • /
    • 2012
  • The ${\epsilon}$ type copper phthalocyanine (${\epsilon}$-CuPc), called as a pigment blue 15 : 6, is a significant material to produce a blue pixel in LCD (Liquid Crystal Display) panel. In this study, ${\epsilon}$-CuPc sample was synthesized at various reaction conditions by applying the seed method using ${\epsilon}$-CuPc nanoparticles as a seed. Adequate synthetic conditions of the samples were selected by analyzing and comparing crystalline structure, crystalline purity, microstructure, and synthetic yield of the samples with ${\alpha}$ and ${\beta}$ crystalline CuPc samples. The chemical and crystalline structure of the samples were tested using FT-IR spectrometer and X-ray diffractometry, respectively. The shape of the particle was examined using field emission scanning electiron microscope while the thermal property was tested utilizing thermogravimetric analysis.

Immobilization of Heavy metal mechanism in Contaminated Coastal Sediment using Biostimulant Ball (BSB) with Modified Zeolite

  • Subha, Bakthavachallam;Woo, Jung-Hui;Song, Young-Chae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.130-131
    • /
    • 2016
  • Although many metals contaminated sediment from coastal area contain both anionic and cationic heavy metals, the current remediation technologies are not effective for stabilize heavy metals of both anionic and cationic elements from contaminated coastal region. the present work investigated the efficiency and mechanism of immobilization of Fe, Zn, Cr, Cu, Pb and Cd metal solutions in modified zeolite based biostimulant ball. Biostimulant ball containing acetate, nitrate and sulphate which are enhance the activity of marine microorganisms and it can act as electron donors and electron acceptors. Modified zeolite and chelating agent is greatly enhance the metal stabilization due to increased immobility of the analysed metals. The XRD, FT-IR and SEM of modified zeolite which cheating agents containing heavy metals were investigated. The results indicated that heavy metals could be effectively immobilized in modified zeolite and chelating agents in BSB added sediment. The immobilization of heavy metals in modified zeolite and chelating agents along with BSB could be due to stabilize of heavy metal cations. Immobilization of heavy metals using BSB with modified zeolite and chelating agent has lower cost effect and enhance the sediment quality.

  • PDF

Characterization of Clay Minerals in Ranch Pasture

  • Kang, Sangjae;Jang, Jeonghun;Park, Nayun;Park, Junhong;Choi, Seyeong;Park, Man;Lee, Changhee;Lee, Donghoon;Zhang, Yongseon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • This study deals with the distribution of the clay minerals separated from clay fractions of ranch pastures in Korea and their chemical and mineralogical properties. Crystalline phases of the clay minerals were identified by powder X-ray diffraction (XRD) pattern and FT-IR spectra, and their relative chemical compositions were also analyzed by X-ray flourescence spectrometry (XRF). Primary minerals consisted mainly of quartz and mica and chlorite and kaolinite along with a trace of swelling micas were identified as secondary clay minerals. However, the relative content of these clay minerals was different with the locations, which led to significant effects on physical and chemical properties of soils like inorganic elemental composition. In particular, $SiO_2$ content was higher in Gochang ranch pasture than in other ranch pasture. Infrared (IR) spectra did not indicate any significant differences in organic functional groups among the locations. This study clearly showed that ranch pastures had different relative content of clay minerals and chemical properties depending on the location and consequently that those properties are worthy to be taken into account for soil amendment.

Chemical Effects to Cement Concrete by Grease Oxidation (그리이스의 산화가 시멘트 콘크리트에 미치는 화학적 영향)

  • 정근우;조원오;김영운;임수진;이은아;김성욱
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.99-105
    • /
    • 2000
  • Greases composed of base oil and thickener are widely used in the purpose of lubrication and anti-corrosion of machinery. However, greases are sometimes oxidized and decomposed by heat of friction, and produced organic acid. And the greases leaked out ordinary spot make the concrete structures weaken. In this study, the chemical effects of the greases with the concrete structures were investigated through oxidation reaction under pressure and oxygen, and evaluated by the analysis of TAN, Ca content, FT-IR and XRD of grease and cement powder after the oxidation reaction. As the results, TAN value decreased with the increase of the content of cement because of neutralization of organic acid produced by the oxidation of grease with calcium contained in the cement. The content of calcium linearly increased with the increase of cement due to calcium salt by neutralization of acid. Also, according to XRD results of the cement powder oxidized at 99 $^{\circ}C$, the diffraction peak due to calcium hydroxide decreased in comparison with that at room temperature because of the reaction of calcium and organic acid.

  • PDF

Effects of Concentration of ZnO Nanoparticles on Mechanical, Optical, Thermal, and Antimicrobial Properties of Gelatin/ZnO Nanocomposite Films

  • Shankar, Shiv;Teng, Xinnan;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.2
    • /
    • pp.41-49
    • /
    • 2014
  • This study illustrates the synthesis of gelatin based zinc oxide nanoparticle (ZnONPs) incorporated nanocomposite films using different concentrations of ZnONPs. The ZnONPs were oval in shape and the size ranged from 100- 200 nm. The nanocomposite films were characterized by UV-visible, FE-SEM, FT-IR, and XRD. The concentrations of ZnONPs greatly influenced the properties of nanocomposite films. The absorption peaks around 360 nm increased with the increasing concentrations of ZnONPs. The surface color of film did not change while transmittance at 280 nm was greatly reduced with increase in the concentration of ZnONPs. FTIR spectra showed the interaction of ZnONPs with gelatin. XRD data demonstrated the crystalline nature of ZnONPs. The thermostability, char content, water contact angle, water vapor permeability, moisture content, and elongation at break of nanocomposite films increased, whereas, tensile strength and modulus decreased with increase in the concentrations of ZnONPs. The gelatin/ZnONPs nanocomposite films showed profound antibacterial activity against both Gram-positive and Gram-negative food-borne pathogenic bacteria. The gelatin/$ZnONP^{1.5}$ nanocomposite film showed the best UV barrier and antimicrobial properties among the tested-films, which indicated a high potential for use as an active food packaging films with environmentally-friendly nature.

  • PDF

Strength Development of Alkali-Activated Fly Ash Exposed to a Carbon Dioxide-Rich Environment at an Early Age

  • Park, Sol-Moi;Jang, Jeong-Gook;Kim, Gwang-Mok;Lee, Haeng-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • The development of a binder system with a lower carbon footprint as an alternative to Portland cement has been intensely researched. In the present study, alkali-activated fly ash exposed to carbon dioxide at an early age was characterized in compressive strength tests and by MIP, XRD and FT-IR analyses. The compressive strength of carbonated specimens experienced a dramatic increase in comparison to uncarbonated specimens. The microstructural densification of the carbonated specimens was evidenced by MIP. The XRD pattern showed peaks assigned to nahcolite, indicating that the pH was lower in the carbonated specimens. Under the carbon dioxide-rich environment, the aluminosilicate gel reached a more Si-rich state, which improved the mechanical properties of the alkali-activated fly ash.

Poly(lactic acid)/Wood Flour/Montmorillonite Nanocomposites (I) : Tensile and Morphological Properties

  • Kim, Jin-Sung;Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh;Yoon, Ho-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.426-433
    • /
    • 2009
  • This study investigates the tensile and morphological properties of nanocomposites prepared from poly(lactic acid) (PLA), wood flour (WF) and montmorillonite (MMT) by melt compounding with a twin screw extruder. In order to enhance the mechanical properties of PLA/WF composites, maleic anhydride grafted PLA (MAPLA) is synthesized as a compatibilizer. MAPLA prepared in the laboratory is characterized using FT-IR (Fourier transformed infrared spectroscopy). From the results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis for nanocomposites, we confirmed that silicate layers of MMT are intercalated and partially exfoliated. When 2 wt% MAPLA is added, the tensile strength and modulus of PLA/WF/MAPLA composites were higher than those of the PLA/WF composite. The addition of MMT increases the tensile modulus of PLA/WF/MAPLA composites but decreases the tensile strength.

Effect of Copper Substitution on Structural and Magnetic Properties of NiZn Ferrite Nanopowders

  • Niyaifar, Mohammad;Shalilian, Hoda;Hasanpour, Ahmad;Mohammadpour, Hory
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.391-394
    • /
    • 2013
  • In this study, nickel-zinc ferrite nanoparticles, with the chemical formula of $Ni_{0.3}Zn_{0.7-x}Cu_xFe_2O_4$ (where x = 0.1- 0.6 by step 0.1), were fabricated by the sol-gel method. The effect of copper substitution on the phase formation and crystal structure of the sample was investigated by X-ray diffraction (XRD), thermo-gravimetry (TG), differential thermal analysis (DTA), Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD result shows that due to the reduction of Zn content,the crystallite size of the sample increased. The results of the vibration sample magnetometer (VSM) exhibit an increase in saturation magnetization value (Ms) for samples with x ${\leq}$ 0.3 and a linear decrease for samples with x > 0.3. The variation of saturation magnetization and coercivity of the samples were then studied.

Synthesis, characterization and dose dependent antimicrobial and anticancerous efficacy of phycogenic (Sargassum muticum) silver nanoparticles against Breast Cancer Cells (MCF 7) cell line

  • Supraja, Nookala;Dhivya, J.;Prasad, T.N.V.K.V.;David, Ernest
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.183-200
    • /
    • 2018
  • In the present study silver nanoparticles (AgNPs) were successfully synthesized using aqueous extract of Sargassum muticum. The aqueous extract (10%) treated with 1 mM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs was recorded at 360 nm using UV-Visible spectrophotometer. The molecules involved in the formation of AgNPs were identified by Fourier transform infrared spectroscopy (FT-IR), surface morphology was studied by using scanning electron microscopy (SEM), SEM micrograph clearly revealed the size of the AgNPs was in the range of 40-65 nm with spherical, hexagonal in shape and poly-dispersed nature, and X-ray diffraction spectroscopy (XRD) was used to determine the crystalline structure. High positive Zeta potential (36.5 mV) of formed AgNPs indicates the stability and XRD pattern revealed the crystal structure of the AgNPs by showing the Bragg's peaks corresponding to (111), (200), (311) and (222) planes of face-centered cubic crystal phase of silver. The synthesized AgNPs exhibited effective anticancerous activity (at doses 25 and $50{\mu}g/ml$ of AgNPs) against Breast cancer cell line (MCF7).

Synthesis of ZnO-Al2O3-Cr2O3 Pigments and Coloring in Glazes (ZnO-Al2O3-Cr2O3 계 안료 합성 및 유약에서의 발색)

  • Choi, Soo-Nyong;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.256-262
    • /
    • 2008
  • $ZnAl_{1-x}\;Cr_xO_4$ solid solutions were synthesized as pink pigments with and without mineralizer. The pigments were examined to optimize color development conditions of temperature and $Cr_2O_3$ contents. The characteristics of synthesized pigments were analyzed by XRD, XPS, FT-IR and UV-vis spectrophotometer. While samples without mineralizer fired at $1300^{\circ}C$, showed $ZnAl_2O_4$ and $ZnCr_2O_4$ spinel in XRD analysis. While samples with mineralizer resulted in $ZnAl_2O_4$. As a results, the pigments show pink color and most effective pink color was obtained at X=0.15 and $1250^{\circ}C$ when mineralizer was used. The chromatic coordinates are $L^*$ 58.61 $a^*$ 24.48, and $b^*$ 9.60.