Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.4.391

Effect of Copper Substitution on Structural and Magnetic Properties of NiZn Ferrite Nanopowders  

Niyaifar, Mohammad (Department of Physics, Science and Research Branch, Islamic Azad University)
Shalilian, Hoda (Department of Physics, Science and Research Branch, Islamic Azad University)
Hasanpour, Ahmad (Department of Physics, Science and Research Branch, Islamic Azad University)
Mohammadpour, Hory (Department of Physics, Science and Research Branch, Islamic Azad University)
Publication Information
Abstract
In this study, nickel-zinc ferrite nanoparticles, with the chemical formula of $Ni_{0.3}Zn_{0.7-x}Cu_xFe_2O_4$ (where x = 0.1- 0.6 by step 0.1), were fabricated by the sol-gel method. The effect of copper substitution on the phase formation and crystal structure of the sample was investigated by X-ray diffraction (XRD), thermo-gravimetry (TG), differential thermal analysis (DTA), Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD result shows that due to the reduction of Zn content,the crystallite size of the sample increased. The results of the vibration sample magnetometer (VSM) exhibit an increase in saturation magnetization value (Ms) for samples with x ${\leq}$ 0.3 and a linear decrease for samples with x > 0.3. The variation of saturation magnetization and coercivity of the samples were then studied.
Keywords
Cu substituted nickel-zinc ferrite; sol-gel; magnetic properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Yan, J. Yin, and E. Zhou, J. Alloys Compd. 450, 417 (2008).   DOI   ScienceOn
2 H.-W. Wang and S.-C. Kung, J. Magn. Magn. Mater. 270, 230 (2004).   DOI   ScienceOn
3 C. S. Kim, W. C. Kim, S. Y. An, and S. W. Lee, J. Magn. Magn. Mater. 215-216, 213 (2000).   DOI   ScienceOn
4 B. P. Rao, A. M. Kumar, K. H. Rao, Y. L. N. Murthya, O. F. Caltun, I. Dumitruc, and L. Spinuc, J. Optoelectron. Adv. Mater. 8, 1703 (2006).
5 J. Hu and Y. Mi, J. Zhejiang Univ. Sci. B. 6, 580 (2005).
6 M. Usakova, J. Luka, R. Dosoudil, V. Jancarik, A. Gruskova, E. Usak, J. Slama, and J. Subrt, J. Mater. Sci.-Mater. Electron. 18, 1183 (2007).   DOI
7 J. Bera and P. K. Roy, J. Mater. Process. Technol. 197, 279 (2008).   DOI   ScienceOn
8 S. Zahi, M. Hashim, and A. R. Duad, Mater. Lett. 60, 2803 (2006).   DOI   ScienceOn
9 R. D. Waldron, Phys. Rev. 99, 1727 (1955).   DOI
10 M. Reichenbacher and J. Popp, Springer-Verlag, Berlin Heidelberg (2012).
11 C. Upadhyay, H. C. Verma, and S. Anand, J. Appl. Phys. 95, 5746 (2004).   DOI   ScienceOn
12 A. Navrotsky and O. J. Kleppa, J. Inorg, Nucl. Chem. 30, 479 (1968).   DOI   ScienceOn
13 I. H. Gul, W. Ahmed, and A. Maqsood, J. Magn. Magn. Mater. 320, 270 (2008).   DOI   ScienceOn
14 Z. Yue, L. Li, J. Zhou, H. Zhang, and Z. Gui, Mater. Sci. Eng., B 64, 68 (1999).   DOI   ScienceOn
15 M. Atif, S. K. Hasanain, and M. Nadeem, Solid State Commun. 138, 416 (2006).   DOI   ScienceOn
16 J. Jacob and M. Abdul Khadar, J. Appl. Phys. 107, 114310 (2010).   DOI   ScienceOn
17 D.-H. Chen and X.-R. He, Mater. Res. Bull. 36, 1369 (2001).   DOI   ScienceOn
18 V. U. Patil and R. G. Kulkarni, Solid State Commun. 31, 551 (1979).   DOI   ScienceOn
19 A. A. Samokhvalov, T. I. Arbuzova, N. A.Viglin, V. V. Osipov, N. I. Solin, S. V. Naumov, V. G. Bamburov, N. I. Lobachevskaya, and O. G. Reznitskikh, Phys. Solid State. 41, 262 (1999).   DOI
20 M. Mozaffari, M. Eghbali Arani, and J. Amighian, J. Magn. Magn. Mater. 322, 3240 (2010).   DOI   ScienceOn
21 Yu. Liming, Sh. Cao, Y. Liu, J. Wang, Ch. Jing, and J. Zhang, J.Magn. Magn. Mater. 301, 100 (2006).   DOI   ScienceOn