Poly(lactic acid)/Wood Flour/Montmorillonite Nanocomposites (I) : Tensile and Morphological Properties

  • Kim, Jin-Sung (Department of Material Science and Engineering, Korea University) ;
  • Lee, Sun-Young (Division of Environmental Material Engineering Department of Forest Products Korea Forest Research Institute) ;
  • Doh, Geum-Hyun (Division of Environmental Material Engineering Department of Forest Products Korea Forest Research Institute) ;
  • Kang, In-Aeh (Division of Environmental Material Engineering Department of Forest Products Korea Forest Research Institute) ;
  • Yoon, Ho-Gyu (Department of Material Science and Engineering, Korea University)
  • Received : 2009.04.30
  • Accepted : 2009.07.03
  • Published : 2009.09.25

Abstract

This study investigates the tensile and morphological properties of nanocomposites prepared from poly(lactic acid) (PLA), wood flour (WF) and montmorillonite (MMT) by melt compounding with a twin screw extruder. In order to enhance the mechanical properties of PLA/WF composites, maleic anhydride grafted PLA (MAPLA) is synthesized as a compatibilizer. MAPLA prepared in the laboratory is characterized using FT-IR (Fourier transformed infrared spectroscopy). From the results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis for nanocomposites, we confirmed that silicate layers of MMT are intercalated and partially exfoliated. When 2 wt% MAPLA is added, the tensile strength and modulus of PLA/WF/MAPLA composites were higher than those of the PLA/WF composite. The addition of MMT increases the tensile modulus of PLA/WF/MAPLA composites but decreases the tensile strength.

Keywords

References

  1. Vink, E. T. H., K. R. Rabago, D. A. Glassner, and P. R. Gruber. 2003. Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polymer Degradation and Stability 80: 403-419 https://doi.org/10.1016/S0141-3910(02)00372-5
  2. Huda, M. S., L. T. Drzal, M. Misra, and A. K. Mohanty. 2006. Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties. Journal of Applied Polymer Science 102: 4856-4869 https://doi.org/10.1002/app.24829
  3. Wolcott, M. P. 1993. Wood Fiber/Polymer CompositesFundamental Concepts, Processes and Material Options, Forest Products Society. Madison, WI. 134
  4. Kazayawoko, M. and J. J. Balatinecz. 1995. Adhesion Mechanisms in Wood FiberPolypropylene Composites, Forest Products Society. Madison, WI. 81
  5. Shah, B. L. and L. M. Matuana. 2005. Novel coupling agents for PVC/wood-flour composites. J. Vinyl. Addit. Technol. 11: 160-165 https://doi.org/10.1002/vnl.20056
  6. Jiang, H. H. and D. P. Kamdem. 2004. Effects of copper amine treatment on mechanical properties of PVC/wood-flour composites. Journal of Vinyl and Additive Technology 10: 70-78 https://doi.org/10.1002/vnl.20010
  7. Bledzki, A. K., S. Reihmane, and J. Gassan. 2002. Physico-mechanical studies of wood fiber reinforced composites. Polymer-Plastic Technology and Engineering 41: 435-451 https://doi.org/10.1081/PPT-120004361
  8. Bledzki, A. K., M. Letman, A. Viksne, and L. Rence. 2005. A comparison of compounding processes and wood type for wood fiber-PP composites. Composite Part A. 36: 789-797 https://doi.org/10.1016/j.compositesa.2004.10.029
  9. Carlson, D., L. Nie, R. Narayan, and P. Dubois. 1999. Maleation of Polylactide (PLA) by Reactive Extrusion. Journal of Applied Polymer Science 72: 477-485 https://doi.org/10.1002/(SICI)1097-4628(19990425)72:4<477::AID-APP3>3.0.CO;2-Q
  10. Beyer, G. 2005. Nanocomposites offer new way forward for flame retardants", Plast. Addit. Compound 7: 32-35 https://doi.org/10.1016/S1464-391X(05)70455-4
  11. Bartholmai, M. and B. Schartel. 2004. Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy Investigations of the potentials and the tasks using a model system. Polymer for Advanced Technologies 15:355-364 https://doi.org/10.1002/pat.483
  12. Pinnavaia, T. J., L. Tie, P. D. Kaviratna, and M. S. Wang, 1994. Clay-polymer nanocomposites: polyether and polyamide systems. Journal of Engineering and Applied Science 346: 81-88
  13. Shi, H., T. Lan, and T. J. Pinnavaia. 1996. Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites, Chemistry of Materials 8: 1584-1587 https://doi.org/10.1021/cm960227m
  14. Gilman, J. W., T. Kashiwagi, and J. D. Lichtenhan. 1997. Nanocomposites: A revolutionary new flame retardant approach, Sampe Journal 33: 40-46
  15. Shiraishi, N. and M. Ajioka. 2000. Composite resin composition, U.S. Pat. 6,150,438
  16. Bellamy, L. J. 1964. The Infrared Spectra of Complex Molecules. Wiley, New York (1964)
  17. Pouchert, C. J. 1970. The Aldrich Library of Infrared Spectra. Aldrich Chemical Co. Milwaukee,WI
  18. Ray, S. S., P. Maiti, M. Okamoto, K. Yamada, and K. Ueda. 2002. New polylactide/layered silicate nanocomposites. 1. preparation, characterization, and properties. Macromolecules 35: 3104-3110 https://doi.org/10.1021/ma011613e
  19. Pluta, M., A. Galeski, M. Alexandre, M. A. Paul, and P. Dubois. 2002. Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. Journal of Applied Polymer Science 86: 1497-1506 https://doi.org/10.1002/app.11309
  20. Park, B. D. and J. Balatinecz. 1996. Effects of impact modification on the mechanical properties of wood-fiber thermoplastic composites with high impact polypropylene (HIPP). Journal of Thermoplastic Composite Materials 9: 342-364 https://doi.org/10.1177/089270579600900404
  21. Felix, J. M. and P. Gatenholm. 1991. The nature of adhesion in composites of modified cellulose fibers and polypropylene. Journal of Applied Polymer Science 42: 609-620 https://doi.org/10.1002/app.1991.070420307
  22. Bledzki, A. K. and J. Gassan. 1999. Composites reinforced with cellulose based fibers process. Progress in Polymer Science 24: 221-274 https://doi.org/10.1016/S0079-6700(98)00018-5
  23. Lee, S. Y., H. S. Yang, H. J. Kim, C. S. Jeong, B. S. Lim, and J. N. Lee. 2004. Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Composite Structures 65: 459-469 https://doi.org/10.1016/j.compstruct.2003.12.007
  24. Son, J. I., H. S. Yang, and H. J. Kim, 2004. Physico-mechanical properties of paper-sludgethermoplastic polymer composites, Journal of Thermoplastic Composite Materials 17: 509-522 https://doi.org/10.1177/0892705704038471
  25. Lu, J. Z., Q. Wu, and H. S. Mcnabb Jr. 2000. Chemical coupling in wood fiber and polymer composites: a reivew of coupling agents and treatments. Wood and Fiber Science 32(1): 88-104
  26. Febrianto, F., M. Yoshioka, Y. Nagai, W. Syafii, and N. Shiraishi. 2006. Characterization of composites of wood flour and polylactic acid. Mokchae Konghak 34(5): 67-78