Browse > Article

Poly(lactic acid)/Wood Flour/Montmorillonite Nanocomposites (I) : Tensile and Morphological Properties  

Kim, Jin-Sung (Department of Material Science and Engineering, Korea University)
Lee, Sun-Young (Division of Environmental Material Engineering Department of Forest Products Korea Forest Research Institute)
Doh, Geum-Hyun (Division of Environmental Material Engineering Department of Forest Products Korea Forest Research Institute)
Kang, In-Aeh (Division of Environmental Material Engineering Department of Forest Products Korea Forest Research Institute)
Yoon, Ho-Gyu (Department of Material Science and Engineering, Korea University)
Publication Information
Journal of the Korean Wood Science and Technology / v.37, no.5, 2009 , pp. 426-433 More about this Journal
Abstract
This study investigates the tensile and morphological properties of nanocomposites prepared from poly(lactic acid) (PLA), wood flour (WF) and montmorillonite (MMT) by melt compounding with a twin screw extruder. In order to enhance the mechanical properties of PLA/WF composites, maleic anhydride grafted PLA (MAPLA) is synthesized as a compatibilizer. MAPLA prepared in the laboratory is characterized using FT-IR (Fourier transformed infrared spectroscopy). From the results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis for nanocomposites, we confirmed that silicate layers of MMT are intercalated and partially exfoliated. When 2 wt% MAPLA is added, the tensile strength and modulus of PLA/WF/MAPLA composites were higher than those of the PLA/WF composite. The addition of MMT increases the tensile modulus of PLA/WF/MAPLA composites but decreases the tensile strength.
Keywords
PLA; wood flour; tensile properties; XRD; TEM;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jiang, H. H. and D. P. Kamdem. 2004. Effects of copper amine treatment on mechanical properties of PVC/wood-flour composites. Journal of Vinyl and Additive Technology 10: 70-78   DOI   ScienceOn
2 Bledzki, A. K., M. Letman, A. Viksne, and L. Rence. 2005. A comparison of compounding processes and wood type for wood fiber-PP composites. Composite Part A. 36: 789-797   DOI   ScienceOn
3 Pinnavaia, T. J., L. Tie, P. D. Kaviratna, and M. S. Wang, 1994. Clay-polymer nanocomposites: polyether and polyamide systems. Journal of Engineering and Applied Science 346: 81-88
4 Shiraishi, N. and M. Ajioka. 2000. Composite resin composition, U.S. Pat. 6,150,438
5 Ray, S. S., P. Maiti, M. Okamoto, K. Yamada, and K. Ueda. 2002. New polylactide/layered silicate nanocomposites. 1. preparation, characterization, and properties. Macromolecules 35: 3104-3110   DOI   ScienceOn
6 Pluta, M., A. Galeski, M. Alexandre, M. A. Paul, and P. Dubois. 2002. Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. Journal of Applied Polymer Science 86: 1497-1506   DOI   ScienceOn
7 Park, B. D. and J. Balatinecz. 1996. Effects of impact modification on the mechanical properties of wood-fiber thermoplastic composites with high impact polypropylene (HIPP). Journal of Thermoplastic Composite Materials 9: 342-364   DOI   ScienceOn
8 Lee, S. Y., H. S. Yang, H. J. Kim, C. S. Jeong, B. S. Lim, and J. N. Lee. 2004. Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Composite Structures 65: 459-469   DOI   ScienceOn
9 Lu, J. Z., Q. Wu, and H. S. Mcnabb Jr. 2000. Chemical coupling in wood fiber and polymer composites: a reivew of coupling agents and treatments. Wood and Fiber Science 32(1): 88-104   ScienceOn
10 Shi, H., T. Lan, and T. J. Pinnavaia. 1996. Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites, Chemistry of Materials 8: 1584-1587   DOI   ScienceOn
11 Vink, E. T. H., K. R. Rabago, D. A. Glassner, and P. R. Gruber. 2003. Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polymer Degradation and Stability 80: 403-419   DOI   ScienceOn
12 Huda, M. S., L. T. Drzal, M. Misra, and A. K. Mohanty. 2006. Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties. Journal of Applied Polymer Science 102: 4856-4869   DOI   ScienceOn
13 Gilman, J. W., T. Kashiwagi, and J. D. Lichtenhan. 1997. Nanocomposites: A revolutionary new flame retardant approach, Sampe Journal 33: 40-46   ScienceOn
14 Beyer, G. 2005. Nanocomposites offer new way forward for flame retardants", Plast. Addit. Compound 7: 32-35   DOI   ScienceOn
15 Bartholmai, M. and B. Schartel. 2004. Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy Investigations of the potentials and the tasks using a model system. Polymer for Advanced Technologies 15:355-364   DOI   ScienceOn
16 Pouchert, C. J. 1970. The Aldrich Library of Infrared Spectra. Aldrich Chemical Co. Milwaukee,WI
17 Kazayawoko, M. and J. J. Balatinecz. 1995. Adhesion Mechanisms in Wood FiberPolypropylene Composites, Forest Products Society. Madison, WI. 81
18 Bellamy, L. J. 1964. The Infrared Spectra of Complex Molecules. Wiley, New York (1964)
19 Wolcott, M. P. 1993. Wood Fiber/Polymer CompositesFundamental Concepts, Processes and Material Options, Forest Products Society. Madison, WI. 134
20 Shah, B. L. and L. M. Matuana. 2005. Novel coupling agents for PVC/wood-flour composites. J. Vinyl. Addit. Technol. 11: 160-165   DOI   ScienceOn
21 Son, J. I., H. S. Yang, and H. J. Kim, 2004. Physico-mechanical properties of paper-sludgethermoplastic polymer composites, Journal of Thermoplastic Composite Materials 17: 509-522   DOI   ScienceOn
22 Carlson, D., L. Nie, R. Narayan, and P. Dubois. 1999. Maleation of Polylactide (PLA) by Reactive Extrusion. Journal of Applied Polymer Science 72: 477-485   DOI   ScienceOn
23 Febrianto, F., M. Yoshioka, Y. Nagai, W. Syafii, and N. Shiraishi. 2006. Characterization of composites of wood flour and polylactic acid. Mokchae Konghak 34(5): 67-78
24 Bledzki, A. K., S. Reihmane, and J. Gassan. 2002. Physico-mechanical studies of wood fiber reinforced composites. Polymer-Plastic Technology and Engineering 41: 435-451   DOI   ScienceOn
25 Felix, J. M. and P. Gatenholm. 1991. The nature of adhesion in composites of modified cellulose fibers and polypropylene. Journal of Applied Polymer Science 42: 609-620   DOI
26 Bledzki, A. K. and J. Gassan. 1999. Composites reinforced with cellulose based fibers process. Progress in Polymer Science 24: 221-274   DOI   ScienceOn