• Title/Summary/Keyword: X2 Interface

Search Result 588, Processing Time 0.027 seconds

Investigation of the ZnO based TFT interface properties with synchrotron radiation analysis

  • Choi, Jong-Kwon;Baik, Min-Kyung;Joo, Min-Ho;Park, Kyu-Ho;Lee, Jay-Man;Kim, Myung-Seop;Yang, Joong-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1298-1300
    • /
    • 2007
  • The interface between SiNx and ZnO was investigated with Near Edge X-ray Absorption Fine Structure (NEXAFS) for ZnO based thin film transistor (TFT) applications. Impurity species were interstitial $N_2$ molecules at the SiNx / ZnO interface. The evolution of $N_2$ is decreased with increasing of anneal temperature.

  • PDF

Design of Self-Timed Standard Library and Interface Circuit

  • Jung, Hwi-Sung;Lee, Moon-Key
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.379-382
    • /
    • 2000
  • We designed a self-timed interface circuit for efficient communication in IP (Intellectual Property)-based system with high-speed self-timed FIFO and a set of self-timed event logic library with 0.25um CMOS technology. Optimized self-timed standard cell layouts and Verilog models are generated for top-down design methodology. A method for mitigating a design bottleneck when it comes to tolerate clock skew is described. With clock control method and FIFO, we implemented high-speed 32bit-interface chip for self-timed system, which generated maximum system clock is 2.2GHz. The size of the core is about 1.1mm x 1.1mm.

  • PDF

Design of a Static ARP Table Management xApp for an E2 Interface Security in Open RAN (Open RAN에서의 E2 인터페이스 보호를 위한 정적 ARP 테이블 관리 xApp 설계)

  • Jihye Kim;Jaehyoung Park;Jong-Hyouk Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.381-382
    • /
    • 2024
  • Open RAN(Radio Access Network)을 선도적으로 연구하고 있는 O-RAN Alliance에서는 Open RAN의 E2 인터페이스에서 발생 가능한 보안 위협 중 하나로 MitM(Man-in-the-Middle) 공격을 명시하였다. 그러나 이에 대응하기 위한 보안 요구사항으로는 3계층 보안 프로토콜인 IPsec 사용을 명시하고 있으며, 2계층 공격인 ARP(Address Resolution Protocol) 스푸핑에 대한 요구사항은 명시하고 있지 않다. 따라서 본 논문에서는 MitM 공격 중 하나인 ARP 스푸핑으로부터 E2 인터페이스를 보호하기 위해, Near-RT RIC의 ARP 테이블에서 E2 인터페이스로 연결되는 장비에 대한 MAC 주소를 정적으로 설정할 수 있는 xApp을 제안한다.

Electrical and interface characteristics of BST thin films grown by RF magnetron reactive sputtering (RF magnetron reactive sputtering 법으로 제작한 BST 박막의 전기적 및 계면 특성에 관한 연구)

  • 강성준;장동훈;유영섭
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.33-39
    • /
    • 1998
  • The BST (Ba$_{1-x}$ Sr$_{x}$TiO$_{3}$)(50/50) thin film has been grown by RF magnetron reactive sputtering and its characteristics such as crystallization, surface roughness, and electrical properties have been investigated with varying the film thickness. The crystallization and surface roughness of BST thin film are investigated by using XRD and AFM, respectively The BST thin film anealed at 800.deg. C for 2 min has pure perovskite structure and good surface roughness of 16.1.angs.. We estimate that the thickness and dielectric constant of interface layer between BST film and electrode are 3nm and 18.9, respectively, by measuring the capacitance with various film thickness. As the film thickness increases form 80nm to 240nm, the dielectric constant at 10kHz increases from 199 to 265 and the leakage current density at 200kV/cm decreases from 0.682.mu.A/cm$^{2}$ to 0.181 .mu.A/cm$^{2}$. In the case of 240nm-thick BST thin film, the charge storage density and leakage current density at 5V are 50.5fC/.mu.m$^{2}$ and 0.182.mu.A/cm$^{2}$, respectively. The values indicate that the BST thin film is a very useful dielectric material for the DRAM capacitor.or.

  • PDF

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Crystalline Phases and Superconductor Characteristics of the Plasma Sprayed YBa2Cu$\chi$O7-y High Tc Superconductor Thick Film (플라즈마 용사법에 의해 제조된 YBa2Cu$\chi$O7-y(X=3, 3.5, 4) 고온초전도체 후막층의 결정상 및 초전도 특성)

  • 한명섭;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.152-160
    • /
    • 1992
  • High-Tc superconductor thick films of YBa2Cu$\chi$O7-y (X=3, 3.5, 4) of which thickness varies from 100 $\mu\textrm{m}$ to 200 $\mu\textrm{m}$ were successfully prepared by plasma spraying method, and the characteristics of thick film depending on copper content and heat treatment conditions were investigated. Regardless of heat-treated temperature, the specimens with X=3 were composed of YBa2Cu$\chi$O7-y, Y2BaCuO5 and BaCuO3 phases. The specimens with X=4, however, were composed of YBa2Cu$\chi$O7-y phase at all heat treatment conditions. The specimens with X=4 composition showed the best superconducting characteristics after heat treatment at 925$^{\circ}C$, and the superconducting transition temperature with zero resistivity (Tc,zero) was 87K. The thick film lost superconductivity when the specimens were heat-treated at 950$^{\circ}C$ because of interdiffusion between superconductor elements and bond coating elements and Y2BaCuO5 phase was found was found to be main phase at the interface.

  • PDF

Simple Synthesis of SiOx by High-Energy Ball Milling as a Promising Anode Material for Li-Ion Batteries

  • Sung Joo, Hong;Seunghoon, Nam
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.445-453
    • /
    • 2022
  • SiOx was prepared from a mixture of Si and SiO2 via high-energy ball milling as a negative electrode material for Li-ion batteries. The molar ratio of Si to SiO2 as precursors and the milling time were varied to identify the synthetic condition that could exhibit desirable anode performances. With an appropriate milling time, the material showed a unique microstructure in which amorphous Si nanoparticles were intimately embedded within the SiO2 matrix. The interface between the Si and SiO2 was composed of silicon suboxides with Si oxidation states from 0 to +4 as proven by X-ray photoelectron spectroscopy and electrochemical analysis. With the addition of a conductive carbon (Super P carbon black) as a coating material, the SiOx/C manifested superior specific capacity to a commercial SiOx/C composite without compromising its cycle-life performance. The simple mechanochemical method described in this study will shed light on cost-effective synthesis of high-capacity silicon oxides as promising anode materials.

Effect of Laser Ablation on Rear Passivation Stack for N-type Bifacial Solar Cell Application (N형 양면 수광 태양전지를 위한 레이저 공정의 후면 패시베이션 적층 구조 영향성)

  • Kim, Kiryun;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.262-266
    • /
    • 2020
  • In this paper, we investigated the effect of the passivation stack with Al2O3, hydrogenated silicon nitride (SiNx:H) stack and Al2O3, silicon oxynitride (SiONx) stack in the n type bifacial solar cell on monocrystalline silicon. SiNx:H and SiONx films were deposited by plasma enhanced chemical vapor deposition on the Al2O3 thin film deposited by thermal atomic layer deposition. We focus on passivation properties of the two stack structure after laser ablation process in order to improve bifaciality of the cell. Our results showed SiNx:H with Al2O3 stack is 10 mV higher in implied open circuit voltage and 60 ㎲ higher in minority carrier lifetime than SiONx with Al2O3 stack at Ni silicide formation temperature for 1.8% open area ratio. This can be explained by hydrogen passivation at the Al2O3/Si interface and Al2O3 layer of laser damaged area during annealing.

Effects of Temperature/Humidity Treatment Conditions on the Peel Strength between Screen-printed Ag and Polyimide Films (고온/고습 조건이 스크린 프린팅 Ag와 Polyimide의 필 강도에 미치는 영향)

  • Lee, Hyeonchul;Bae, Byeong-Hyun;Son, Kirak;Kim, Gahui;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.43-48
    • /
    • 2022
  • Effect of temperature/humidity (T/H) treatment conditions on the peel strength of screen-printed Ag/polyimide (PI) structures was evaluated by peeling PI films in 90° peel test. Initial peel strength was 25.99±1.47 gf/mm, and then decreased to 6.05±0.54 gf/mm after 500 h at 85℃/85% relative humidity T/H condition. And, the peeled locus was changed from Ag/PI interface to shallow cohesive inside PI near interface. X-ray photoelectron spectroscopy analysis on the peeled surfaces showed that the long-term moisture penetration into the Ag/PI interface during T/H treatment led to hydrolytic degradation of PI to form weak boundary layer inside PI near Ag/PI interface, which are responsible for large decrease in peel strength.

A.C. Impedance Properties of HA/Ti Compound Layer coated Ti-30Ta-(3~15)Nb Alloys (Ti-30Ta-(3~15)Nb 합금에 HA/Ti 복합 코팅한 표면의 교류임피던스 특성)

  • Jeong, Y.H.;Lee, H.J.;Moong, Y.P;Park, G.H.;Jang, S.H.;Son, M.K.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.181-188
    • /
    • 2008
  • A.C. impedance properties of HA/Ti compound layer coated Ti-30Ta-($3{\sim}15$)Nb alloys have been studied by electrochemical method. Ti-30Ta binary alloys contained 3, 7, 10 and 15 wt% Nb were manufactured by the vacuum furnace system. And then specimen was homogenized at $1000^{\circ}C$ for 24 hrs. The sample was cut and polished for corrosion test and coating. It was coated with HA/Ti compound layer by magnetron sputter. The non-coated and coated morphology of Ti alloy were analyzed by X-ray diffractometer (XRD), energy X-ray dispersive spectroscopy (EDX) and filed emission scanning electron microscope (FE-SEM). The corrosion behaviors were investigated using A.C. impedance test (PARSTAT 2273, USA) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. Ti-30Ta-($3{\sim}15\;wt%$)Nb alloys showed the ${\alpha}+{\beta}$ phase, and $\beta$ phase peak was predominantly appeared in the case of increasingly Nb contents. The microstructures of Ti alloy were transformed from needle-like structure to equiaxed structure as Nb content increased. From the analysis of coating surface, HA/Ti composite surface uniformed coating layer with 750 nm thickness. The growth directions of film were (211), (112), (300) and (202) for HA/Ti composite coating on the surface after heat treatment at $550^{\circ}C$, whereas, the growth direction of film was (110) for Ti coating. The polarization resistance ($R_p$) of HA/Ti composite coated Ti-alloys were higher than those of the Ti and HA coated samples in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. Especially, corrosion resistance of Ti-Ta-Nb system increased as Nb content increased.