• Title/Summary/Keyword: X-ray microscope

Search Result 1,440, Processing Time 0.027 seconds

ULTRA-STRUCTURE AND ACID ETCHING CHARACTERISTICS OF OCCLUSAL FISSURE ENAMEL (교합면 열구 법랑질의 미세구조 및 산부식 형태)

  • Cho, Tae-Sik;Yoon, Jeong-Hoon;Kim, Su-Gwan;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.321-331
    • /
    • 2005
  • The purpose of this study was to compare the effectiveness of mechanical and acid treatment on enamel surfaces for the retention of pit and fissure sealants and evaluate the presence of a prismless layer. The etch pattern produced on enamel from immature and mature premolar teeth extracted with varying period of acid etching using 37% phosphoric acid was examined using a scanning electron microscope(SEM). The composition of each groups was evaluated using an energy dispersive x-ray(EDX) spectroscopy. The result of present study can be summarized as follows: 1. Prismless layer was commonly observed on the fissure enamel in young and mature premolar. 2. There were no differences in micro-structure and etching pattern on fissure enamel between the young and the mature premolar. 3. The most effective etching pattern for retention of pit and fissure sealant was observed in 60 seconds of etching time and no apparent difference of etching pattern was found among 15, 30, and 45 seconds of etching time which showed non-retentive etching patterns. 4. The etching pattern obtained by grinding enamel surface with bur followed by 60 seconds of etching was similar to that of 60 seconds of etching without any pretreatment of fissure surface. 5. Type 2 etching pattern was commonly found on fissure enamel in both young and mature premolar. 6. The calcium content and P/Ca ratio in fissure enamel between the young and the mature premolar were significantly different(P<0.05). But content of calcium, phosphate and P/Ca ratio on various regions of fissure enamel in both young and mature premolar did not showed any difference. Based on these results, prismless layer may negatively influence the retention of pit and fissure sealants. Therefore, the mechanical removal of the prismless layer by grinding prior to etching or by prolonged etching time of enamel within the fissure system should result in an improved bonding of a pit and fissure sealant.

  • PDF

THE EFFECT OF LOW DIETARY CALCIUM AND IRRADIATION ON MANDIBLE IN RATS (저칼슘식이와 방사선조사가 백서 악골에 미치는 영향의 실험적 연구)

  • Lee Sun-Ki;Lee Sang-Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.23 no.2
    • /
    • pp.229-250
    • /
    • 1993
  • This study was performed to investigate the morphological and structural changes of bone tissues and the effects of irradiation on the mandibular bodies of rats which were fed low calcium diets. In order to carry out this experiment, 160 seven-week old Sprague-Dawley strain rats weighing about 150 gm were selected and equally divided into one normal diet group of 80 rats and one low calcium diet group with the remainder. These groups were then subdivided into two groups, 40 were assigned rats for each subdivided group, exposed to radiation. The Group 1 was composed of forty non-irradiated rats with normal diet, Group 2 of forty irradiated rats with normal diet, Group 3 forty non-irradiated rats with low calcium diet, and Group 4 forty irradiated rats with low calcium diet. The two irradiation groups received a single dose of 20 Gy on the jaw area only and irradiated with a cobalt-50 teletherapy unit. The rats with normal and low calcium diet groups were serially terminated by ten on the 3rd, the 7th, the 14th, and the 21st day after irradiation. After termination, both sides of the dead rats mandible were removed and fixed with 10% neutral formalin. The bone density of mandibular body was measured by use of bone mineral densitometer(Model DPX -alpha, Lunar Corp., U.SA). Triga Mark ill nuclear reactor in Korea Atomic Research Institute was used for neutron activation and then calcium contents of mandibular body were measured by using a 4096 multichannel analyzer (EG and G ORTEC 919 MCA, U.SA). Also the mandibular body was radiographed with a soft X-ray apparatus(Hitex Co., Ltd., Japan). Thereafter, the obtained microradiograms were observed by a light microscope and were used for the morphometric analysis using a image analyzer(Leco 2001 System, Leco Co., Canada). The morphometric analysis was performed for parameters such as the total area, the bone area, the inner and outer perimeters of the bone. The obtained results were as follows: 1. In the morphometric analysis, total area and outer perimeter of the mandibular bodies of Group 3 were a little smaller than that of Group 1. The mean bone width and bone area were much smaller than that of Group 1 and the inner perimeter of Group 3 was much longer than that of Group 1. The total area and outer perimeter of Group 2 and Group 4 showed little difference. The mean bone width and bone area of Group 4 were smaller than that of Group 2 and the inner perimeter of Group 4 was longer than that of Group 2. 2. The remarkable decreases of the number and thickness of trabeculae and also the resorption of endosteal surface of cortical bone could be seen in the microradiogram of Group 3, Group 4 since the 3rd day of experiment. On the 21st day of experiment, the above findings could be more clearly seen in Group 4 than in Group 3. 3. The bone mineral density of Group 3 was lesser than that of Group 1 and the bone mineral density of Group 4 was lesser than that of Group 2 on the 7th, 14th, 21st days. The irradiation caused the bone mineral density to be decreased regardless of diet. In the case of Groups with low calcium diet, the bone mineral density was much decreased on the 21st day than on the 3rd day of experiment. 4. The calcium content in mandible of Group 3 was smaller than that of Group 1 throughout the experiment. roup 4 showed the least amount of calcium content. The irradiation caused the calcium content to be decreased regardless of diet. In the case of Groups with low calcium diet, the calcium content was much decreased on the 21st day than on the 3rd day of experiment. In conclusion, the present study demonstrated that morphological changs and decrease of bone mass due to resorption of bone by low calcium diet, and that the resorption of bone could be found in the spongeous bone and endosteal surface of cortical bone. So the problem of resorption of bone must be considered when the old and the postmenopausal women are taken radiotherapy because the irradiation seems to be accelerated the resorption of osteoporotic bone.

  • PDF

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.

Ti-Getter Effects on Magnetic Properties of Ti0.96Co0.02Fe0.02O2 (Ti-Getter가 Ti0.96Co0.02Fe0.02O2의 자기적 특성에 미치는 영향)

  • Nam, H.D.;Kim, S.J.;Baek, J.K.;Lee, S.R.;Park, Cheol-Su;Kim, E.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2008
  • The samples were synthesized by using a solid state reaction. The X-ray diffraction pattern for $Ti_{0.96}Co_{0.02}Fe_{0.02}O_2$ showed a pure rutile phase with tetragonal structure, Mixtures of the proper proportions of the elements sealed in evacuated quartz ampoule were heated at $870{\sim}930^{\circ}C$ for one day and then slowly cooled down to room temperature at a rate of $10^{\circ}C$/h. In order to obtain single phase material, it was necessary to grind the sample after the first firing and to press the powders into pellets before annealing them for a second time in evacuated and sealed quartz ampoule. Magnetic properties have been investigated using the vibrating sample magnetometer (VSM). Room temperature magnetic hysteresis (M-H) curve showed an obvious ferromagnetic behavior and the magnetic moment per Fe atom under the applied of 0.8 T was estimated to be about $1.5\;{\mu}_B$/CoFe. But the magnetic moment per Fe atom under the applied of 0.8 T was estimated to be about $0.02\;{\mu}_B$/CoFe without Ti-getter. Size of particles is about $1\;{\mu}m$ using the transmission electron microscope (TEM). The ingredients of sample are distributed irregular in particles. Only Fe get shown on the surface of particles.

THE COMPARISON OF DIFFERENT CANAL IRRIGATION METHODS TO PREVENT REACTION PRECIPITATE BETWEEN SODIUM HYPOCHLORITE AND CHLORHEXIDINE (차아염소산나트륨과 클로르헥시딘의 반응침전물 형성방지를 위한 여러 가지 근관세척 방법의 비교)

  • Choi, Moon-Sun;Park, Se-Hee;Cho, Kyung-Mo;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.80-87
    • /
    • 2010
  • The purpose of this study was to compare the different canal irrigation methods to prevent the formation of precipitate between sodium hypochlorite (NaOCl) and chlorhexidine (CHX). Extracted 50 human single-rooted teeth were used. The root canals were instrumented using NiTi rotary file (Profile .04/#40) with 2.5% NaOCl and 17% EDTA as irrigants. Teeth were randomly divided into four experimental groups and one control group as follows; Control group: 2.5% NaOCl only, Group 1: 2.5% NaOCl + 2% CHX, Group 2: 2.5% NaOCl + paper points + 2% CHX, Group 3: 2.5% NaOCl + preparation with one large sized-file + 2% CHX, Group 4: 2.5% NaOCl +95% alcohol+ 2% CHX. The teeth were split in bucco-lingual aspect and the specimens were observed using Field Emission Scanning Electron Microscope. The percentages of remaining debris and patent dentinal tubules were determined. Statistical analysis was performed with one-way analysis of variance (ANOVA). Energy Dispersive x-ray Spectroscopy was used for analyzing the occluded materials in dentinal tubule for elementary analysis. There were no significant differences in percentage of remaining debris and patent tubules between all experimental groups at all levels (p > .05). In elementary analysis, the most occluded materials in dentinal tubule were dentin debris. NaOCl/CHX precipitate was detected in one tooth specimen of Group 1. In conclusion, there were no significant precipitate on root canal, but suspected material was detected on Group 1. The irrigation system used in this study could be prevent the precipitate formation.

Manufacturing Techniques of a Backje Gilt-Bronze Cap from Bujang-ri Site in Seosan (서산 부장리 백제 금동관모의 제작기법 연구)

  • Chung, Kwang Yong;Lee, Su Hee;Kim, Gyongtaek
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.243-280
    • /
    • 2006
  • At the Bujang-ri Site, Seosan, South Chungcheong Province, around 220 archaeological features, including semi-subterranean houses and pits of Bronze Age and semi-subterranean houses, pits, and burials of Baekje period had been identified and investigated. In Particular, mound burials No. 5 of 13 of Baekje mound burials yielding a gilt-bronze cap along with other valuable artifacts drew international scholarly attention. The gilt-bronze cap from the mound burial No. 5 is a significant archaeological data not only in the study of Baekje archaeology but also in the study of international affairs and exchange at that time. At the time of exposure, the gilt-bronze cap was already broken into a number of pieces and seriously damaged by corrosion, and hardening and urethane foam were necessary in the process of collecting its pieces. Ahead of main conservational treatments on cap, X-ray photograph and CT(computerizes tomography) were taken in order to examine interior structure of the cap and to decide appropriate treatments. In the five layers identified in the profile of cap, a textile layer was set between a metal and a layerof bark of paper birch for avoiding direct contact of the metal and the bark of paper birch. Analyses were executed for examining textile layer and a layer of fibroid material. According to microscopic analysis, while the textile layer consisted of the simplest plain fabric with one fold among three kinds of textile structures, the layer of fibroid material was mixed with two or three kinds of fibers. A comparative analysis with standard sample using FT-IR (Fourier Transform Infrared Spectroscopy) announced that both textiles and fabrics were hemp. Analysis of kind of the paper birch resulted in barks of paper birch with 15 fold. A metallographic microscope, SEM, and WDS were used for the analysis of microscopic structures of plated metal pieces. While amalgam plating was treated as a plating method, the thickness of the plated layer, a barometer of plating technique, was ranged from $1.72{\mu}m$ to $8.67{\mu}m$. The degree of purity of gold (Au) used in plating was 98% in average, and less than 1% of silver (Ag) was included.

A Study on Smalt Pigments Used in Large Buddhist Paintings in the 18th and 19th Centuries (18~19세기 대형 불화에 사용된 회청(Smalt) 안료에 관한 연구)

  • YUN, Jihyeon;KIM, Sojin;KIM, Gyuho
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.120-129
    • /
    • 2022
  • The purpose of this study is to analyze the chemical composition of smalt pigments used in 10 large Buddhist paintings in the Joseon Dynasty using energy dispersive X-ray spectroscopy, and to clarify the material and characteristics by observing morphological characteristics using polarized light microscopy and a scanning electron microscope. Through chemical composition analysis, the smalt of all 10 large Buddhist paintings is judged to be potash glass using SiO2 as a former and K2O as a flux. In addition to the components related to cobalt ore used as a colorant, the paintings were found to contain high levels of As2O3, BaO, and PbO. The smalt particles did not have specific forms, and were blue in color, with various chromaticity. In some particles, conchoidal fracture, spherical bubbles, and impurities were observed. Through backscattered electron images, it was found that the smalt from paintings produced in the early 18th century AD had a high level of As, but the smalt from paintings produced from the mid-18th century AD onwards exhibited various contrast differences from particle to particle, and there was smalt with high levels of As, Ba, and Pb. Through the above results, the large Buddhist paintings in the Joseon Dynasty are divided into three smalt types. Type A is a type with high As2O3, type B is a type with high BaO, and type C is a type with high PbO. Looking at the three types of smalt pigments by the period of production, although some in-between periods were not detected, type A was confirmed to have been used from 1705 to 1808, while type B and type C were shown to have appeared in 1750 and used until 1808. This reveals that only one type of smalt was used until the early 18th century AD, and from the middle of the 18th century AD, several types of smalt were mixed and used in one large Buddhist painting. Studies such as this research are expected to provide insights into the characteristics of the smalt pigments used to produce large Buddhist paintings at the time.

A study on characteristics of palace wallpaper in the Joseon Dynasty - Focusing on Gyeongbokgung Palace, Changdeokgung Palace and Chilgung Palace - (조선시대 궁궐 도배지 특성 연구 - 경복궁, 창덕궁, 칠궁을 중심으로 -)

  • KIM Jiwon;KIM Jisun;KIM, Myoungnam;JEONG Seonhwa
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.80-97
    • /
    • 2023
  • By taking wallpaper specimens from Gyeongbokgung Palace, Changdeokgung Palace, and Chilgung Palace preserved from the late Joseon Dynasty to the present, we planned in this study to determine the types and characteristics of the paper used as wallpaper in the Joseon royal family. First, we confirmed the features of paper hanging in the palaces with old literature on the wallpaper used by the royal family based on archival research. Second, we conducted a field survey targeting the royal palaces whose construction period was relatively clear, and analyzed the first layer of wallpaper directly attached to the wall structure after sampling the specimens. Therefore, we confirmed that the main raw material was hanji, which was used as a wallpaper by the royal family, and grasped the types of substances(dyes and pigments) used to produce a blue color in spaces that must have formality by analyzing the blue-colored paper. Based on the results confirmed through the analysis, we checked documents and the existing wallpaper by comparing the old literature related to wallpaper records of the Joseon Dynasty palaces. We also built a database for the restoration of cultural properties when conserving the wallpaper in the royal palaces. We examined the changes in wallpaper types by century and the content according to the place of use by extracting wallpaper-related contents recorded in 36 cases of Uigwe from the 17th to 20th centuries. As a result, it was found that the names used for document paper and wallpaper were not different, thus document paper and wallpaper were used without distinction during the Joseon Dynasty. And though there are differences in the types of wallpaper depending on the period, it was confirmed that the foundation of wallpaper continued until the late Joseon Dynasty, with Baekji(white hanji), Hubaekji(thick white paper), jeojuji(common hanji used to write documents), chojuji(hanji used as a draft for writing documents) and Gakjang(a wide and thick hanji used as a pad). As a result of fiber identification by the morphological characteristics of fibers and the normal color reaction(KS M ISO 9184-4: Graph "C" staining test) for the first layer of paper directly attached to the palace wall, the main materials of hanji used by the royal family were confirmed and the raw materials used to make hanii in buildings of palaces based on the construction period were determined. Also, as a result of analyzing the coloring materials of the blue decorative paper with an optical microscope, ultraviolet-visible spectroscopic analysis(UV-Vis), and X-ray diffraction analysis(XRD), we determined that the type of blue decorative paper dyes and pigments used in the palaces must have formality and identified that the raw materials used to produce the blue color were natural indigo, lazurite and cobalt blue.

Experimental Investigation of Stannite-Sphalerite System In Relation to Ores (황석석일섬아연석계(黃錫石一閃亞鉛石系)의 실험연구(實驗硏究)와 천연건물(天然鍵物)에의 활용(活用))

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.8 no.1
    • /
    • pp.1-23
    • /
    • 1975
  • The subject of this study deals with phase relations between stannite ($Cu_2FeSnS_4$) and sphalerite (${\beta}-ZnS$)/wurtzite (${\alpha}-ZnS$). The phase relations were systematically investigated from liquidus temperature to $400^{\circ}C$ under controlled conditions. ${\beta}-stannite$ (tetragonal) is stable up to $706{\pm}5^{\circ}C$, where it inverts to a high-temperature polymorph ${\alpha}-stannite$ (cubic) melting congruently at $867{\pm}5^{\circ}C$. Sphalerite (cubic, ${\beta}-ZnS$) inverts at $1013{\pm}3^{\circ}C$ to wurtzite, which is the hexagonal hightemperature polymorph of ZnS. Between ${\alpha}-stannite$ and sphalerite a complete solid solution series exists above approximately $870^{\circ}C$ up to solidus temperature. The melting temperature of ${\alpha}-stannite$ rises towards sphalerite and reaches a maximum at $1074{\pm}3^{\circ}C$, which is the peritectic with the composition of 91 wt. % sphalerite and 9 wt. % ${\alpha}-stannite$. At this temperature, wurtzite takes only 5wt. % ${\alpha}-stannite$ in solid solution which decreases with increasing temperature. The inverson temperature of ${\alpha}/{\beta}-stannite$ is lowered with increasing amounts of sphalerite in solid solution down to $614{\pm}7^{\circ}C$, which is the eutectoid with the composition of 13 wt. % sphalerite and 87 wt. % ${\alpha}-stannite$. Here, ${\beta}-stannite$ contains only 10wt. % sphalerite in solid solution. With decreasing temperature, the ranges of the solid solution on both sides of the system narrow. The phase relations in the above pure system changed due to the FeS impurities in the sphalerite solid solution. The eutectoid increased from $614{\pm}7^{\circ}C$ up to $695{\pm}5^{\circ}C$ (5 wt. % FeS) and $700{\pm}5^{\circ}C$ (10wt. % FeS), while the peritectic decreased from $1074{\pm}3^{\circ}C$ down to $1036{\pm}3^{\circ}C$ (wt. %FeS) and $987{\pm}3^{\circ}C$ (10wt. %FeS). A most notable change is the appearance of non-binary regions. An important feature is the combination of this study system with the experimental results reported by Sprinfer (1972). If a stannite-kesterite solid solution is used in the place of stannite as a bulk composition, the inversion temperature is lowered to less than $400^{\circ}C$ which belongs to temperatures of the hydrothermal region.

  • PDF

Cellular activities of osteoblast-like cells on alkali-treated titanium surface (알칼리 처리된 타이타늄 표면에 대한 골아 유사세포의 세포 활성도)

  • Park, Jin-Woo;Lee, Deog-Hye;Yeo, Shin-Il;Park, Kwang-Bum;Choi, Seok-Kyu;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.427-445
    • /
    • 2007
  • To improve osseointegration at the boneto-implant interface, several studies have been carried out to modify titanium surface. Variations in surface texture or microtopography may affect the cellular response to an implant. Osteoblast-like cells attach more readily to a rougher titanium surface, and synthesis of extracellular matrix and subsequent mineralization were found to be enhanced on rough or porous coated titanium. However, regarding the effect of roughened surface by physical and mechanical methods, most studies carried out on the reactions of cells to micrometric topography, little work has been performed on the reaction of cells to nanotopography. The purpose of this study was to examme the response of osteoblast-like cell cultured on blasted surfaces and alkali treated surfaces, and to evaluate the influence of surface texture or submicro-scaled surface topography on the cell attachment, cell proliferation and the gene expression of osteoblastic phenotype using ROS 17/2.8 cell lines. In scanning electron micrographs, the blasted, alkali treated and machined surfaces demonstrated microscopic differences in the surface topography. The specimens of alkali treatment had a submicro-scaled porous sur-face with pore size about 200 nm. The blasted surfaces showed irregularities in morphology with small(<10 ${\mu}m$) depression and indentation among flatter-appearing areas of various sizes. Based on profilometry, the blasted surfaces was significantly rougher than the machined and the alkali treated surfaces (p$TiO_2$) were observed on alkali treated surfaces, whereas not observed on machined and blasted surfaces. The attachment morphology of cells according to time was observed by the scanning electron microscope. After 1 hour incubation, the cells were in the process of adhesion and spreading on the prepared surfaces. After 3 hours, the cells on all prepared surfaces were further spreaded and flattened, however on the blasted and alkali treated surfaces, the cells exhibited slightly irregular shapes and some gaps or spaces were seen. After 24 hours incubation, most cells of the all groups had a flattened and polygonal shape, but the cells were more spreaded on the machined surfaces than the blasted and alkali treated surfaces. The MTT assay indicated the increase on machined, alkali treated and blasted surfaces according to time, and the alkali treated and blasted surfaces showed significantly increased in optical density comparing with machined surfaces at 1 day (p<0.01). Gene expression study showed that mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin of the osteoblast-like cells showed a tendency to be higher on blasted and alkali treated surfaces than on the machined surfaces, although no siginificant difference in the mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin was observed among all groups. In conclusion, we suggest that submicroscaled surfaces on osteoblast-like cell response do not over-ride the one of the surface with micro-scaled topography produced by blasting method, although the microscaled and submicro-scaled surfaces can accelerate osteogenic cell attachment and function compared with the machined surfaces.