Browse > Article
http://dx.doi.org/10.4283/JKMS.2008.18.3.109

Ti-Getter Effects on Magnetic Properties of Ti0.96Co0.02Fe0.02O2  

Nam, H.D. (Department of Electronic Engineering, Yeungnam University)
Kim, S.J. (Department of Physics, Yeungnam University)
Baek, J.K. (Department of Physics, Yeungnam University)
Lee, S.R. (Department of Physics, Yeungnam University)
Park, Cheol-Su (Department of Physics, Yeungnam University)
Kim, E.C. (Department of Physics, Yeungnam University)
Abstract
The samples were synthesized by using a solid state reaction. The X-ray diffraction pattern for $Ti_{0.96}Co_{0.02}Fe_{0.02}O_2$ showed a pure rutile phase with tetragonal structure, Mixtures of the proper proportions of the elements sealed in evacuated quartz ampoule were heated at $870{\sim}930^{\circ}C$ for one day and then slowly cooled down to room temperature at a rate of $10^{\circ}C$/h. In order to obtain single phase material, it was necessary to grind the sample after the first firing and to press the powders into pellets before annealing them for a second time in evacuated and sealed quartz ampoule. Magnetic properties have been investigated using the vibrating sample magnetometer (VSM). Room temperature magnetic hysteresis (M-H) curve showed an obvious ferromagnetic behavior and the magnetic moment per Fe atom under the applied of 0.8 T was estimated to be about $1.5\;{\mu}_B$/CoFe. But the magnetic moment per Fe atom under the applied of 0.8 T was estimated to be about $0.02\;{\mu}_B$/CoFe without Ti-getter. Size of particles is about $1\;{\mu}m$ using the transmission electron microscope (TEM). The ingredients of sample are distributed irregular in particles. Only Fe get shown on the surface of particles.
Keywords
XRD; VSM; Ti-getter; rutile$Ti_{0.96}Co_{0.02}Fe_{0.02}O_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature, 402, 787 (1999)   DOI   ScienceOn
2 M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulou, K. T. McCarthy, and A. F. Hebard, Appl. Phys. Lett., 79, 1312 (2001)   DOI   ScienceOn
3 S. E. Park, H. J. Lee, Y. C. Cho, S. Y. Jeong, C. R. Cho, and S. Cho, Appl. Phys. Lett., 80, 4187 (2002)   DOI   ScienceOn
4 K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett., 79, 988 (2001)   DOI   ScienceOn
5 M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, J. C. Roberts, and S. M. Bedair, Appl. Phys. Lett., 79, 3473 (2001)   DOI   ScienceOn
6 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 294, 1488 (2001)   DOI   ScienceOn
7 M. Hashimoto, Y. K. Zhou, M. Kanamura, and H. Asahi, Solid State Commun., 122, 37 (2002)   DOI   ScienceOn
8 Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science, 291, 854 (2001)   DOI   ScienceOn
9 Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature, 402, 790 (1999)   DOI   ScienceOn
10 G. A. Prinz, Science, 282, 1660 (1998)   DOI   ScienceOn