• Title/Summary/Keyword: X-ray field

Search Result 1,749, Processing Time 0.033 seconds

Fabrication of patterned substrate by wet process for biochip (습식 공정법에 의한 바이오칩 용 패터닝 기판 제조)

  • Kim, Jin-Ho;Lee, Min;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.288-292
    • /
    • 2009
  • Hydrophobic/hydrophilic patterned substrates were fabricated on a glass substrate by a liquid phase deposition (LPD) method. Hydrophobic surface was obtained by modifying ZnO thin films with a rough surface using a fluoroalkyltrimethoxysilane (FAS) and hydrophilic surface was prepared by decomposing FAS on an exposed to UV light. The hexagonal ZnO rods were perpendicularly grown by LPD method on glass substrates with a ZnO seed layer. The diameter and thickness of hexagonal ZnO rods were increased as a function of increases of immersion time. The surface morphology, thickness, crystal structure, transmittance and contact angle of prepared ZnO thin films were measured by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectrophotometer (UV-vis) and contact angle measurement. Hydrophilic ZnO thin films with a contact angle of $20^{\circ}{\sim}30^{\circ}$ were changed to a hydrophobic surface with a contact angle of $145^{\circ}{\sim}161^{\circ}$ by a FAS surface treatment. Prepared hydrophobic surface was pattered by an irradiation of UV light using shadow mask with $300\;{\mu}m$ or 3 mm dot size. Finally, the hydrophobic surface exposed to UV light was changed to a hydrophilic surface.

Properties of TiO2 thin films fabricated with surfactant by a sol-gel method (Sol-gel 법에 의하여 제조된 계면활성제 첨가 TiO2 박막 특성)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Cho, Yong-Seok;Lim, Tae-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.267-271
    • /
    • 2010
  • Super hydrophilic and high transparent $TiO_2$ thin films were successfully fabricated by sol-gel method without an irradiation of UV light. In addition, surfactant Tween 80 was used for increasing the transmittance of the thin films. When the contents of Tween 80 in $TiO_2$ solution were 0.0, 1.0, 3.0, 5.0 wt%, the transmittance of $TiO_2$ thin films was ca. 74.31%, 74.25%, 79.69%, 81.99% at 550 nm wavelength, respectively. The contact angles of fabricated $TiO_2$ thin films with or without Tween 80 were from ca. $4.0^{\circ}$ to $4.5^{\circ}$. The $TiO_2$ thin films annealed over $400^{\circ}C$ showed anatase crystal structure and the photocatalytic property that decomposed methyl orange with UV irradiation. The surface morphologies, optical properties and contact angle of prepared thin films with different contents of Tween 80 were evaluated by field emission scanning electron microscope (FE-SEM), X-ray diffratometer (XRD), UV-Vis spectrophotometer and contact angle meter.

A study on Etch Characteristics of {Y-2}{O_3}$ Thin Films in Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 {Y-2}{O_3}$ 박막의 식각 특성 연구)

  • Kim, Yeong-Chan;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.9
    • /
    • pp.611-615
    • /
    • 2001
  • Y$_2$O$_3$ thin films have been proposed as a buffering insulator of metal/ferroelectric/insulator/semiconductor field effect transistor(MFISFET)-type ferroelectric random access memory (FRAM). In this study, $Y_2$O$_3$ thin films were etched with inductively coupled plasma(ICP). The etch rates of $Y_2$O$_3$ and YMnO$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were investigated by varying Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2$O$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were 302$\AA$/min, and 2.4 at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2 respectively. Optical emission spectroscopy(OES) was used to understand the effects of gas combination on the etch rate of $Y_2$O$_3$ thin film. The surface reaction of the etched $Y_2$O$_3$ thin films was investigated by x-ray photoelectron spectroscopy (XPS). XPS analysis confirmed that there was chemical reaction between Y and Cl. This result was confirmed by secondary ion mass spectroscopy(SIMS) analysis.

  • PDF

A Case of Superior Vena Cava Syndrome Caused by Klebsiella Pneumonia (폐렴간균 폐렴에 의해 유발된 상대정맥 증후군 1예)

  • Kim, Ju-Young;Lim, Chae-Man;Kim, Seon-Hee;Chu, Yun-Ho;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.1
    • /
    • pp.58-62
    • /
    • 1994
  • Superior vena cava(SVC) syndrome is mostly related to a malignant process, but many different benign causes have also been described. We report a case of SVC syndrome caused by Klebsiella pneumonia diagnosed by sputum culture and serial chest X-ray changes. A 27-year-old man had been in stable health until three days before admission, when he complained of pleuritic chest pain, facial flushing, and shortness of breath. Examination of the head and neck disclosed edema of face and both arms, and jugular venous distention to the angle of the jaw. The chest auscultation revealed decreased breath sound without crack1e on right upper lung field. The chest roentgenogram showed homogenous air space consolidation on right upper lobe, asociated with downward displacement of minor fissure and contralateral displacement of trachea, but air bronchogram was not seen. We began antibiotic therapy under impression of pneumonia after available culture was taken from blood and sputum. SVC scintigraphy showed stasis of drain of right brachiocephalic vein at the proximal portion with reflux into the right internal jugular vein and faintly visible SVC via the collaterals. Sputum culture revealed Klebsiella pneumoniae. Antibiotic therapy resulted in a cure of infection and disappearance of facial swelling. Follow-up SVC scintigraphy after 20 days showed normal finding. We first report a case of SVC syndrome caused by klebsiella pneunonia.

  • PDF

Characterizations of graded AlGaN epilayer grown by HVPE (HVPE 방법에 의해 성장된 graded AlGaN 에피층의 특성)

  • Lee, Chanbin;Jeon, Hunsoo;Lee, Chanmi;Jeon, Injun;Yang, Min;Yi, Sam Nyung;Ahn, Hyung Soo;Kim, Suck-Whan;Yu, Young Moon;Sawaki, Nobuhiko
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • Compositionally graded AlGaN epilayer was grown by HVPE (hydride vapor phase epitaxy) on (0001) c-plane sapphire substrate. During the growth of graded AlGaN epilayer, the temperatures of source and the growth zone were set at $950^{\circ}C$ and $1145^{\circ}C$, respectively. The growth rate of graded AlGaN epilayer was about 100 nm/hour. The changing of Al contentes was investigated by field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS). From the result of atomic force microscope (AFM), the average of roughness in 2 inch substrate of graded AlGaN epilayer was a few nanometers scale. X-ray diffraction (XRD) with the result that the AlGaN (002) peak ($Al_{0.74}Ga_{0.26}N$) and AlN (002) peak were appeared. It seems that the graded AlGaN epilayer was successfully grown by the HVPE method. From these results, we expect to use of the graded AlGaN epilayer grown by HVPE for the application of electron and optical devices.

Evaluation of imaging reformation for root and pulp canal shapes of permanent teeth using a cone beam computed tomography (Cone beam형 전산화단층영상을 이용한 영구치 치근과 근관의 형태 평가)

  • Hong, Jong-Hyun;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.3
    • /
    • pp.165-170
    • /
    • 2007
  • Purpose: To estimate the shape of root and pulp canal using a dental cone beam computed tomography (CBCT) and to evaluate the accuracy of imaging reformation. Materials and Methods: CBCT images were obtained with incisors, premolars, and molars as the destination by using PSR $9000N^{TM}$ Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) and i-CAT (Imaging Sciences International, Inc, USA) cone beam CT unit that have different kind of detector and field of view, and compared these with the shape and the size of actual root and root canal. Results: When the measuring value of cone beam computed tomography concerning to each root's bucco-lingual diameter and mesio-distal diameter was compared with the value of the actual root, it reveals an error range $-0.49{\sim}+0.63$ mm at PSR900N and $-0.97{\sim}+1.14$ mm at i-CAT (P>0.05). It was possible to identify and measure PSR$9000N^{TM}$ Dental CT system to the limit $0.48{\pm}0.06mm$ (P>0.05) and i-CAT CBCT to the limit $0.86{\pm}0.09mm$ (P<0.05) on estimating the size and the shape of root canal. Two kinds of CBCT images revealed the useful reproducibility to estimate the shape of root, but there was the difference to estimate the shape of root according to apparatus. The reproducibility of root shape in the image of three-dimensions at PSR 900N is low such as 0.65 mm in a case of minute root canal. Conclusions: CBCT images revealed higher accuracy of the imaging reformation for root and pulp and clinically CBCT is a useful diagnostic tool for the assessment of root and canal. However, there are different qualities of imaging reformation according to CBCT apparatus and limitation of reproducibility for minute root canals.

  • PDF

Structural and optical properties of heat-treated Ga doped ZnO thin films grown on glass substrate by RF magnetron sputtering (RF 마그네트론 스퍼터링 법으로 유리 기판 위에 성장 시킨 Ga 도핑된 ZnO 박막의 열처리에 따른 구조적, 광학적 특성 평가)

  • Lee, J.S.;Kim, G.C.;Jeon, H.H.;HwangBoe, S.J.;Kim, D.H.;Seong, C.M.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • We have investigated the effect of annealing on the structural and optical properties of polycrystalline Ga doped ZnO (GZO) films grown on glass substrates by RF-magnetron sputter at room temperature. The structural and optical properties of as-grown GZO films were characterized and then samples were annealed at $400{\sim}600^{\circ}C$ in $N_2$ ambient for 30, 60 minutes, respectively. The field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were used to measure the grain size and the crystalline quality of the films. We found that the crystalline quality was improved and the grain size tends to be increased. The optical properties of GZO thin films were analyzed by UV-VIS-NIR spectrophotometers. It is found that optical properties of thin films are increased by annealing and can be used for transparent electrode application. We believe that the appropriate post-growth heat treatment could be contributed to the improvement of GZO-based devices.

The electrical properties of PLZT thin films on ITO coated glass with various post-annealing temperature (ITO 기판에 제작된 PLZT 박막의 후열처리 온도에 따른 전기적 특성평가)

  • Cha, Won-Hyo;Youn, Ji-Eon;Hwang, Dong-Hyun;Lee, Chul-Su;Lee, In-Seok;Sona, Young-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • Lanthanum modified lead zirconate titanate ($Pb_{1.1}La_{0.08}Zr_{0.65}Ti_{0.35}O_3$) thin films were fabricated on indium doped tin oxide (ITO)-coated glass substrate by R.F magnetron sputtering method. The thin films were deposited at $500^{\circ}C$ and post-annealed with various temperature ($550-750^{\circ}C$) by rapid thermal annealing technique. The structure and morphology of the films were characterized with X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. The hysteresis loops and fatigue properties of thin films were measured by precision material analyzer. As the annealing temperature was increased, the remnant polarization value was increased from $10.6{\mu}C/cm^2$ to $31.4{\mu}C/cm^2$, and coercive field was reduced from 79.9 kV/cm to 60.9 kV/cm. As a result of polarization endurance analysis, the remnant polarization of PLZT thin films annealed at $700^{\circ}C$ was decreased 15% after $10^9$ switching cycles using 1MHz square wave form at ${\pm}5V$.

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF

Effects of Growth Conditions on Properties of ZnO Nanostructures Grown by Hydrothermal Method (수열합성법으로 성장된 ZnO 나노구조의 성장조건에 따른 특성)

  • Cho, Min-Young;Kim, Min-Su;Kim, Ghun-Sik;Choi, Hyun-Young;Jeon, Su-Min;Yim, Kwang-Gug;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.262-266
    • /
    • 2010
  • ZnO nanostructures were grown on an Au seed layer by a hydrothermal method. The Au seed layer was deposited by ion sputter on a Si (100) substrate, and then the ZnO nanostructures were grown with different precursor concentrations ranging from 0.01 M to 0.3M at $150^{\circ}C$ and different growth temperatures ranging from $100^{\circ}C$ to $250^{\circ}C$ with 0.3 M of precursor concentration. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL (photoluminescence) were carried out to investigate the structural and optical properties of the ZnO nanostructures. The different morphologies are shown with different growth conditions by FE-SEM images. The density of the ZnO nanostructures changed significantly as the growth conditions changed. The density increased as the precursor concentration increased. The ZnO nanostructures are barely grown at $100^{\circ}C$ and the ZnO nanostructure grown at $150^{\circ}C$ has the highest density. The XRD pattern shows the ZnO (100), ZnO (002), ZnO (101) peaks, which indicated the ZnO structure has a wurtzite structure. The higher intensity and lower FWHM (full width at half maximum) of the ZnO peaks were observed at a growth temperature of $150^{\circ}C$, which indicated higher crystal quality. A near band edge emission (NBE) and a deep level emission (DLE) were observed at the PL spectra and the intensity of the DLE increased as the density of the ZnO nanostructures increased.