Browse > Article
http://dx.doi.org/10.5757/JKVS.2008.17.1.023

Structural and optical properties of heat-treated Ga doped ZnO thin films grown on glass substrate by RF magnetron sputtering  

Lee, J.S. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Kim, G.C. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Jeon, H.H. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
HwangBoe, S.J. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Kim, D.H. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Seong, C.M. (Hyosung R&D Business Labs.)
Jeon, M.H. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Publication Information
Journal of the Korean Vacuum Society / v.17, no.1, 2008 , pp. 23-27 More about this Journal
Abstract
We have investigated the effect of annealing on the structural and optical properties of polycrystalline Ga doped ZnO (GZO) films grown on glass substrates by RF-magnetron sputter at room temperature. The structural and optical properties of as-grown GZO films were characterized and then samples were annealed at $400{\sim}600^{\circ}C$ in $N_2$ ambient for 30, 60 minutes, respectively. The field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were used to measure the grain size and the crystalline quality of the films. We found that the crystalline quality was improved and the grain size tends to be increased. The optical properties of GZO thin films were analyzed by UV-VIS-NIR spectrophotometers. It is found that optical properties of thin films are increased by annealing and can be used for transparent electrode application. We believe that the appropriate post-growth heat treatment could be contributed to the improvement of GZO-based devices.
Keywords
ZnO; RF magnetron sputtering; annealing; glass;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. II 23, L280 (1984)   DOI   ScienceOn
2 B. H. Choi, H. B. Im, J. S. Song, and K.H. Yoon, Thin Solid Films 193, 712 (1990)   DOI   ScienceOn
3 B. H. Choi, H. B. Im, J. S. Song, and K.H. Yoon, Thin Solid Films 193, 712 (1990)   DOI   ScienceOn
4 J. M. Lim, K. C. Shin and C. M. Lee, J. Mat. Sci. & Eng. B 107, 301 (2004)   DOI   ScienceOn
5 H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, Appl. Phys. Lett. 77, 3761 (2000)   DOI   ScienceOn
6 Y. J. Li, Y. W. Kwon, M. Jones, Y. W. Heo, J. Zhou, S. C. Luo, P. H. Holloway, E. Douglas, D. P. Norton, Z. Park and S. Li, Semicond. Sci. Technol. 20, 720 (2005)   DOI   ScienceOn
7 D. C. Look and B. Claflin, Phys. Stat. Sol. (b) 624, 241 (2004)
8 G. A. Hirata, J. McKittrick, T. Cheeks, J. M. Siqueiros, J. A. Diaz, O. Contreras and O. A. Lopez, Thin Solid Films 288, 29-31(1996)   DOI   ScienceOn
9 K. Shimakawa, T. Itoh, Jpn. Appl. Phys. 46, 24 (2007)   DOI
10 B.J. Lokhande, P. S. Patil, and M. D. Uplane, Physica B 302/303, 59 (2001)   DOI   ScienceOn
11 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004)   DOI   ScienceOn
12 B. D. Cullity Elements of X-ray Diffraction (Addition-wesley, Reading, MA, 1978), pp.102-21
13 Miyazaki, K. Sato, A. Mitsui and H. Nishimuro, J. Non-Crys. Solids 218, 323 (1997)   DOI   ScienceOn
14 R. L. Hoffman, B. J. Norris and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003)   DOI   ScienceOn
15 X. Yu, J. Ma, F Ji, Y. Wang, X. Zhang, and H. Ma, Thin solid films 483, 296 (2005)   DOI   ScienceOn
16 B. M.Atacv, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov and R. A. Rabadanov, Thin Solid Films 260, 19 (1995)   DOI   ScienceOn
17 J. Hu, and R. G. Gordon, J. Appl. Phys. 72, 5381 (1992)   DOI