• 제목/요약/키워드: X-ray diffraction test

검색결과 476건 처리시간 0.03초

이온교환수지를 이용한 새로운 오메프라졸 복합체 개발 (Development of New Omeprazole-lon Exchange Resin Complex)

  • 이계주;이기명;김은영;이창현;황성주
    • 약학회지
    • /
    • 제38권3호
    • /
    • pp.250-264
    • /
    • 1994
  • Omeprazole(OMZ)-cholestyramine(CHL) and various OMZ-Dowex resin complexes were prepared by reaction between OMZ and activated resins in 0.1N NaOH solution. And their physical properties were tested by means of infrared(IR), differential scaning caloimeter(DSC), X-ray diffraction. Chemical stability of OMZ-CHL was increased markedly compared with OMZ and the decomposition of OMZ-CHL followed the pseudo first-order kinetics and the rate constants were $2.743{\times}10^{-4}/day$ at $20^{\circ}C$, $7.83{\times}10^{-3}day^{-1}$ under 80% RH and $1.68{\times}10^{-2}day^{-1}$ under UV radiation, respectively. On the other hand, the rate constants of OMZ were $2.996{\times}10^{-4}day^{-1}$ at $20^{\circ}C$, $1.17{\times}10^{-2}day^{-1}$ under 85% RH, and $4.07{\times}10^{-2}day^{-1}$ under UV radiation, respectively. The rates of dissolution of OMZ-CHL bulk and OMZ-CHL tablet were 100% and more than 85% in 15 minutes, respectively, which were increased than OMZ base and OMZ-tablet. In the acute toxicological test, the value of oral $LD_{50}$(mouse) was 4.608 g/kg. OMZ-CHL was pelletized using lactose, polyethyle neglycol(PEG), D-sorbitol, Avicel PH 101, sodium laurylsulfate and polyvinylpyrrolidone(PVP) K-30, and enteric coated with HPMCP, Myvacet, acetone, ethanol and cetanol, of which dissolution rate was found to be more than 85% in 10 minutes. From the above results, it was found that OMZ-CHL is a useful means for development of new oral dosage forms of OMZ.

  • PDF

리튬이온이차전지 음극활물질로써 주석을 첨가한 열분해탄소의 합성과 특성평가 (Synthesis and Characterization of Tin-Pyrolyzed Carbon Composites as Anode Material for Lithium Ion Secondary Batteries)

  • 황윤주;박상호;김애란;;;서은경;남기석
    • 에너지공학
    • /
    • 제19권1호
    • /
    • pp.16-20
    • /
    • 2010
  • 본 연구에서는 바이오매스로 커피원두를 이용하여 합성한 카본재료에 도전재로 주석을 이용하였다. 주석을 첨가하는 방법에 따라 단순 혼합, 화학적인 방법을 이용하여 혼합체를 만들어 시료를 합성하였다. 시료에 대한 XRD를 이용하여 주석과 탄소가 혼합된 구조를 가지고 있음을 확인하였고 SEM을 통한 합성된 시료구입자크기($12{\sim}85\;{\mu}m$)와 형태를 확인하였다. 충 방전 테스트를 실시하여 15사이클에서 카본블랙을 사용했을 때(105 mAh/g)보다 주석을 화학적으로 혼합을 시킨 시료의 경우(191 mAh/g)가 방전용량이 더 높게 나타나는 것을 볼 수 있었고, 주석을 단순 혼합을 실시한 경우에서는 카본블랙과 비슷한 용량(131 mAh/g)을 보였다.

Fabrication and Characterization of PZT Suspensions for Stereolithography based on 3D Printing

  • Cha, JaeMin;Lee, Jeong Woo;Bae, Byeonghoon;Lee, Seong-Eui;Yoon, Chang-Bun
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.360-364
    • /
    • 2019
  • PZT suspensions for photo-curable 3D printing were fabricated and their characteristics were evaluated. After mixing the PZT, photopolymer, photo-initiator, and dispersant for 10 min by using a high-shear mixer, the viscosity characteristics were investigated based on the powder content. To determine an appropriate dispersant content, the dispersant was mixed at 1, 3, and 5 wt% of the powder and a precipitation test was conducted for two hours. Consequently, it was confirmed that the dispersibility was excellent at 3 wt%. Through thermogravimetric analysis, it was confirmed that weight reduction occurred in the photopolymer between 120? and 500?, thereby providing a debinding heat treatment profile. The fabricated suspensions were cured using UV light, and the polymer was removed through debinding. Subsequently, the density and surface characteristics were analyzed by using the Archimedes method and field-emission scanning electron microscopy. Consequently, compared with the theoretical density, an excellent characteristic of 97% was shown at a powder content of 87 wt%. Through X-ray diffraction analysis, it was confirmed that the crystallizability improved as the solid content increased. At the mixing ratio of 87 wt% powder and 13 wt% photo-curable resin, the viscosity was 3,100 cps, confirming an appropriate viscosity characteristic as a stereolithography suspension for 3D printing.

관교의치용 Au-Ag-Cu-Pt-Zn 합금의 시효경화성과 관련된 상변태와 입계석출 (Phase transformation and grain boundary precipitation related to the age-hardening of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication)

  • 조미향
    • 대한치과기공학회지
    • /
    • 제34권4호
    • /
    • pp.345-352
    • /
    • 2012
  • Purpose: The age-hardening mechanism of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication was investigated by means of hardness test, X-ray diffraction study and field emission scanning electron microscopic observation. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine, and were subsequently aged isothermally at $400-450^{\circ}C$ for various periods of time in a molten salt bath and then quenched into ice brain. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: By the isothermal aging of the solution-treated specimen at $450^{\circ}C$, the hardness increased rapidly in the early stage of aging process and reached a maximum hardness value. After that, the hardness decreased slowly with prolonged aging. However, the relatively high hardness value was obtained even with 20,000 min aging. By aging the solution-treated specimen, the f.c.c. Au-Ag-rich ${\alpha}_0$ phase was transformed into the Au-Ag-rich ${\alpha}_1$ phase and the AuCu I ordered phase. Conclusion: The hardness increase in the early stage of aging process was attributed to the formation of lattice strains by the precipitation of the Cu-rich phase and then subsequent ordering into the AuCu I-type phase. The decrease in hardness in the later stage of aging process was due to the release of coherency strains by the coarsening of tweed structure in the grain interior and by the growth and coarsening of the lamellar structure in the grain boundary. The increase of inter-lamellar space contributed slightly to the softening compared to the growth of lamellar structure toward the grain interior.

Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar

  • Hu, Yuquan;Hu, Shaowei;Yang, Bokai;Wang, Siyao
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.449-457
    • /
    • 2020
  • The influence of subsequent curing on the performance of fly ash contained mortar under steam curing was studied. Mortar samples incorporated with different content (0%, 20%, 50% and 70%) of Class F fly ash under five typical subsequent curing conditions, including standard curing (ZS), water curing(ZW) under 25℃, oven-dry curing (ZD) under 60℃, frozen curing (ZF) under -10℃, and nature curing (ZN) exposed to outdoor environment were implemented. The unsteady chloride diffusion coefficient was measured by rapid chloride migration test (RCM) to analyze the influence of subsequent curing condition on the resistance to chloride penetration of fly ash contained mortar under steam curing. The compressive strength was measured to analyze the mechanical properties. Furthermore, the open porosity, mercury intrusion porosimetry (MIP), x-ray diffraction (XRD) and thermogravimetric analysis (TGA) were examined to investigate the pore characteristics and phase composition of mortar. The results indicate that the resistance to chloride ingress and compressive strength of steam-cured mortar decline with the increase of fly ash incorporated, regardless of the subsequent curing condition. Compared to ZS, ZD and ZF lead to poor resistance to chloride penetration, while ZW and ZN show better performance. Interestingly, under different fly ash contents, the declining order of compressive strength remains ZS>ZW>ZN>ZD>ZF. When the fly ash content is blow 50%, the open porosity grows with increase of fly ash, regardless of the curing conditions are diverse. However, if the replacement amount of fly ash exceeds a certain high proportion (70%), the value of open porosity tends to decrease. Moreover, the main phase composition of the mortar hydration products is similar under different curing conditions, but the declining order of the C-S-H gels and ettringite content is ZS>ZD>ZF. The addition of fly ash could increase the amount of harmless pores at early age.

Planar Type Flexible Piezoelectric Thin Film Energy Harvester Using Laser Lift-off

  • Noh, Myoung-Sub;Kang, Min-Gyu;Yoon, Seok Jin;Kang, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.489.2-489.2
    • /
    • 2014
  • The planar type flexible piezoelectric energy harvesters (PEH) based on PbZr0.52Ti0.48O3 (PZT) thin films on the flexible substrates are demonstrated to convert mechanical energy to electrical energy. The planar type energy harvesters have been realized, which have an electrode pair on the PZT thin films. The PZT thin films were deposited on double side polished sapphire substrates using conventional RF-magnetron sputtering. The PZT thin films on the sapphire substrates were transferred by PDMS stamp with laser lift-off (LLO) process. KrF excimer laser (wavelength: 248nm) were used for the LLO process. The PDMS stamp was attached to the top of the PZT thin films and the excimer laser induced onto back side of the sapphire substrate to detach the thin films. The detached thin films on the PDMS stamp transferred to adhesive layer coated on the flexible polyimide substrate. Structural properties of the PZT thin films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). To measure piezoelectric power generation characteristics, Au/Cr inter digital electrode (IDE) was formed on the PZT thin films using the e-beam evaporation. The ferroelectric and piezoelectric properties were measured by a ferroelectric test system (Precision Premier-II) and piezoelectric force microscopy (PFM), respectively. The output signals of the flexible PEHs were evaluated by electrometer (6517A, Keithley). In the result, the transferred PZT thin films showed the ferroelectric and piezoelectric characteristics without electrical degradation and the fabricated flexible PEHs generated an AC-type output power electrical energy during periodically bending and releasing motion. We expect that the flexible PEHs based on laser transferred PZT thin film is able to be applied on self-powered electronic devices in wireless sensor networks technologies. Also, it has a lot of potential for high performance flexible piezoelectric energy harvester.

  • PDF

나노분말이 분산된 에폭시 섬유수지의 전자파차폐 효과 (Electromagnetic Wave Shielding Effect of Nano-powder Dispersed Epoxy Resin Composite)

  • 한준영;이철희;최민규;홍순직;박중학;이동진
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.234-239
    • /
    • 2015
  • Electronic products are a major part of evolving industry and human life style; however most of them are known to emit electromagnetic waves that have severe health hazards. Therefore, different materials and fabrication techniques are understudy to control or limit transfer of such waves to human body. In this study, nanocomposite powder is dispersed into epoxy resin and shielding effects such as absorption, reflection, penetration and multiple reflections are investigated. In addition, nano size powder (Ni, $Fe_2O_3$, Fe-85Ni, C-Ni) is fabricated by pulsed wire evaporation method and dispersed manually into epoxy. Characterization techniques such as X-ray diffraction, Scanning electron microscopy and Transmission electron microscopy are used to investigate the phase analysis, size and shape as well as dispersion trend of a nano powder on epoxy matrix. Shielding effect is measured by standard test method to investigate the electromagnetic shielding effectiveness of planar materials, ASTM D4935. At lower frequency, sample consisting nano-powder of Fe-85%Wt Ni shows better electromagnetic shielding effect compared to only epoxy, only Ni, $Fe_2O_3$ and C-Ni samples.

방전플라즈마 소결법에 의해 제조된 Fe-Ni 합금의 미세조직 및 고온산화특성 (Microstructure and High Temperature Oxidation Behaviors of Fe-Ni Alloys by Spark Plasma Sintering)

  • 임채홍;박종석;양상선;윤중열;이진규
    • 한국분말재료학회지
    • /
    • 제24권1호
    • /
    • pp.53-57
    • /
    • 2017
  • In this study, we report the microstructure and the high-temperature oxidation behavior of Fe-Ni alloys by spark plasma sintering. Structural characterization is performed by scanning electron microscopy and X-ray diffraction. The oxidation behavior of Fe-Ni alloys is studied by means of a high-temperature oxidation test at $1000^{\circ}C$ in air. The effect of Ni content of Fe-Ni alloys on the microstructure and on the oxidation characteristics is investigated in detail. In the case of Fe-2Ni and Fe-5Ni alloys, the microstructure is a ferrite (${\alpha}$) phase with body centered cubic (BCC) structure, and the microstructure of Fe-10Ni and Fe-20Ni alloys is considered to be a massive martensite (${\alpha}^{\prime}$) phase with the same BCC structure as that of the ferrite phase. As the Ni content increases, the micro-Vickers hardness of the alloys also increases. It can also be seen that the oxidation resistance is improved by decreasing the thickness of the oxide film.

거도광산(巨道鑛山) Fe-Cu 및 Au-Bi-Cu 광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究) (Mineralogy and Genesis of Fe-Cu and Au-Bi-Cu Deposits in the Geodo Mine, Korea)

  • 고재동;김수진
    • 자원환경지질
    • /
    • 제15권4호
    • /
    • pp.189-204
    • /
    • 1982
  • The Geodo mine is located in the southern limb of the Hambaeg syncline. Geology of the area consists of Paleozoic-Mesozoic sedimentary Rocks and Cretaceous igneous rocks. The important igneous rocks presumably related to skarnization and ore mineralization in the area, are the early granodiorite and the late porphyritic granodiorite. Two mineralogical types of ore deposits are recognized in the area. They are the Fe-Cu deposits in the Myobong formation and the Au-Bi-Cu deposits in the Hwajeol formation. Contact metamorphism due to granodiorite intrusion includes hornfelsization, exoskarnization and endoskarnization. Wall-rock alterations related to the Fe mineralization are grouped into the hydrothermal replacement skarnization and the hydrothermal filling skarnization. Another hydrothermal alteration is associated with the Cu mineralization. Various mineralogical analyses have been applied for the identification of minerals. They include optical microscopy, chemical analysis, etching test, X-ray diffraction, and infrared absorption spectroscopic analyses. The ore minerals in these ore deposits are classified into two groups;hypogene and supergene minerals. Hypogene minerals consist of magnetite, pyrite, chalcopyrite, and chalcocite. Supergene minerals consist of chalcocite, bornite, and geothite. Ore minerals show various kinds of ore texture: open-space filling, exsolution, replacement, and cementation texture. The gangue minerals consist of quartz, diopside, epidote, garnet and plagioclase in the hornfelsic zone, garnet, diopside, scapolite, actinolite, sericite, chlorite, quartz, and calcite in the skarn zone, and, epidote, chlorite, sericite, quartz, and calcite in the late hydrothermal alteration zone. This study shows that the Fe-Cu deposits are of metasomatic pipe type with the later hydrothermal fillings, and the Au-Bi-Cu deposits are of hydrothermal fissure-filling type. The mineralization is probably related to the intrusion of porphyritic granite.

  • PDF

Manufacturing and Macroscopic Properties of Kinetic Spray Ni-Cr-Al-Y Coating Layer

  • Kim, Ji Won;Lee, Ji Hye;Jang, Hae Chang;Lee, Kee-Ahn
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.408-412
    • /
    • 2015
  • This study attempts to manufacture a Ni-Cr-Al-Y coating layer using a kinetic spray process and investigates the microstructure and physical properties of the manufactured layer. The Ni-22Cr-10Al-1Y (wt.%) composition powder is used, and it has a spherical shape with an average diameter of $23.7{\mu}m$. Cu plate is used as the substrate. Optical microscope, X-ray diffraction, scanning electron microscope and Vickers hardness test are carried out to characterize the macroscopic properties of the coating layer. Furthermore, the coating layer underwent vacuum heat treatment at temperatures of $400^{\circ}C$ and $600^{\circ}C$ for 1 hour to check the effect of heat treatment temperature on the properties. The manufactured coating layer is 1.5 mm thick, and featured identical phases to those found in the powder. The porosity of the coating layer is measured at 2.99%, and the hardness is obtained at $490.57H_v$. The layer shows reduced porosity as heat treatment temperature increased, and hardness is reduced at $400^{\circ}C$ but shows a slight increase at $600^{\circ}C$. Based on the findings described above, this study also discusses possible manufacturing methods for a Ni-Cr-Al-Y coating layer using the kinetic spray process.