References
- B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics; pp. 135-81, Academic Press London and New York, 1997.
- S.-E. Park and T. R. Shrout, "Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals," J. Appl. Phys., 82 [4] 1804-11 (1997). https://doi.org/10.1063/1.365983
- D. W. Ji and S. J. Kim, "State-Dependent Pyroelectric and Thermal Expansion Coefficients in a PZT Rectangular Parallelepiped after Compressive Loading and Unloading," J. Mater. Sci., 49 [2] 766-75 (2014). https://doi.org/10.1007/s10853-013-7759-x
- H. Kungl and M. J. Hoffmann, "Temperature Dependence of Poling Strain and Strain under High Electric Fields in LaSr-doped Morphotropic PZT and its Relation to Changes in Structural Characteristics," Acta Mater., 55 [17] 5780-91 (2007). https://doi.org/10.1016/j.actamat.2007.06.035
- A. J. Bell, "Factors Influencing the Piezoelectric Behaviour of PZT and other "Morphotropic Phase Boundary" Ferroelectrics," J. Mater. Sci., 41 [1] 13-25 (2006). https://doi.org/10.1007/s10853-005-5913-9
-
T. R. Howarth and R. Y. Ting, "Electroacoustic Evaluation of 1 - 3 Piezocomposite
$SonoPanel^{TM}$ Materials," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 7 [4] 886-94 (2000). - T. K. Ha, H.-J. Sung, S. Ahn, and Y. W. Chang, "Powder Injection Molding Technology," Trans. Mater. Process., 12 [6] 521-28 (2003). https://doi.org/10.5228/KSPP.2003.12.6.521
- R. E. Newnham, D. P. Skinner, and L. E. Cross, "Connectivity and Piezoelectric-Pyro-Electric Composites," Mater. Res. Bull., 13 [5] 525-36 (1978). https://doi.org/10.1016/0025-5408(78)90161-7
- X. Jiang, K. Kim, S. Zhang, J. Johnson, and G. Salazar, "High-Temperature Piezoelectric Sensing," Sensors, 14 [1] 144-69 (2013). https://doi.org/10.3390/s140100144
- C.-J. Bae and J. W. Halloran, "Integrally Cored Ceramic Mold Fabricated by Ceramic Stereolithography," Int. J. Appl. Ceram. Technol., 8 [6] 1255-62 (2011). https://doi.org/10.1111/j.1744-7402.2010.02568.x
- A. Zocca, P. Colombo, C. M. Gomes, and J. Gunster, "Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities," J. Am. Ceram. Soc., 98 [7] 1983-2001 (2015). https://doi.org/10.1111/jace.13700
- T. Friedel, N. Travitzky, F. Niebling, M. Scheffler, and P. Greil, "Fabrication of Polymer Derived Ceramic Parts by Selective Laser Curing," J. Eur. Ceram. Soc., 25 [2-3] 193-97 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.07.017
- J. Deckers, J. Vleugels, and J.-P. Kruth, "Additive Manufacturing of Ceramics: A Review," J. Ceram. Sci. Tech., 5 [4] 245-60 (2014).
- M. L. Griffith and J. W. Halloran, "Freeform Fabrication of Ceramics via Stereolithography," J. Am. Ceram. Soc., 79 [10] 2601-8 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb09022.x
- C. Decker, "UV-Radiation Curing Chemistry," Pigm. Resin Technol., 30 [5] 278-86 (2001). https://doi.org/10.1108/03699420110404593
- H. Ji and H. S. Lee, "Comparison of the Viscosity of Ceramic Slurries Using a Rotational Rheometerand a Vibrational Viscometer," J. Korean Ceram. Soc., 49 [6] 542-48 (2012). https://doi.org/10.4191/kcers.2012.49.6.542
- J. W. Halloran, "Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization," Annu. Rev. Mater. Res., 46 19-40 (2016). https://doi.org/10.1146/annurev-matsci-070115-031841
- C.-J. Bae and J. W. Halloran, "Integrally Cored Ceramic Mold Fabricated by Ceramic Stereolithography," Int. J. Appl. Ceram. Technol., 8 [6] 1289-95 (2011). https://doi.org/10.1111/j.1744-7402.2010.02578.x
Cited by
- 3Y-TZP DLP Additive Manufacturing: Solvent-free Slurry Development and Characterization vol.24, pp.2, 2019, https://doi.org/10.1590/1980-5373-mr-2020-0457
- Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function vol.6, pp.8, 2019, https://doi.org/10.1002/admt.202001218