• 제목/요약/키워드: X-ray Imaging

검색결과 1,056건 처리시간 0.032초

System Design and Evaluation of a Compact and High Energy X-ray Talbot-Lau Grating Interferometer for Industrial Applications

  • Lee, Seho;Oh, Ohsung;Kim, Youngju;Lee, Seung Wook;Kim, Insoo;Kim, Jinkyu
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1827-1833
    • /
    • 2018
  • X-ray grating interferometry has been an active area of research in recent years. In particular, various studies have been carried out for the practical use of the x-ray grating interferometer in medical and industrial fields. For the commercialization of the system, it needs to be optimized for its application. In this study, we have developed a prototype of the compact high energy x-ray grating interferometer of which the high effective energy and compactness is of our primary feature of design. We have designed the Talbot-Lau x-ray interferometer in a symmetrical geometry with an effective energy of 54.3 keV. The system has a source-to-analyzer grating distance of 788.4 mm, which is compact enough for a commercial product. In a normal operation, it took less than ten seconds to acquire a set of phase stepping images. The acquired images had a maximum visibility of about 15%, which is relatively high compared with the visibilities of the other high-energy grating interferometric systems reported so far.

a-Se을 이용한 디지털 X-선 검출기의 Discharge Erasing Method에 관한 연구 (Study of Discharge Erasing Method of a-Se based Digital X-ray Detector)

  • 이동길;박지군;최장용;강상식;남상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.395-398
    • /
    • 2002
  • Many research group started study to develope x-ray detector using thin film transistor from 1970. But realization of TFT based x-ray detector development was caused by progress of thin film transistor liquid crystal display(TFTLCD) device technology in 1990. The main current of TFT technology is display device. Research results expend TFT technology field from display device to sensor manufacture technology. These days many research group in the world realize various digital x-ray detector. In this study, We compare discharge erasing method to visible light erasing method in a-Se based digital x-ray detector. Visible light erasing method is known reset process in direct conversion x-ray detector. Digital x-ray detector using visible light erasing method is not adaptive for conventional x-ray device, because of its thickness. And it is not avaliable for real-time imaging for digital fluoroscopy, because of its long reset time. In this study we overcome these limitations and show new idea for real-time imaging method.

  • PDF

A TiO2-Coated Reflective Layer Enhances the Sensitivity of a CsI:Tl Scintillator for X-ray Imaging Sensors

  • Kim, Youngju;Kim, Byoungwook;Kwon, Youngman;Kim, Jongyul;Kim, MyungSoo;Cho, Gyuseong;Jun, Hong Young;Thap, Tharoeun;Lee, Jinseok;Yoon, Kwon-Ha
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.256-260
    • /
    • 2014
  • Columnar-structured cesium iodide (CsI) scintillators doped with thallium (Tl) are frequently used as x-ray converters in medical and industrial imaging. In this study we investigated the imaging characteristics of CsI:Tl films with various reflective layers-aluminum (Al), chromium (Cr), and titanium dioxide ($TiO_2$) powder-coated on glass substrates. We used two effusion-cell sources in a thermal evaporator system to fabricate CsI:Tl films on substrates. The scintillators were observed via scanning electron microscopy (SEM), and scintillation characteristics were evaluated on the basis of the emission spectrum, light output, light response to x-ray dose, modulation transfer function (MTF), and x-ray images. Compared to control films without a reflective layer, CsI:Tl films with reflective layers showed better sensitivity and light collection efficiency, and the film with a $TiO_2$ reflective layer showed the best properties.

X-ray 미세 영상기법을 이용한 불투명 튜브 내부 미세기포의 크기 및 속도 동시 측정 (Simultaneous measurement of size and velocity of micro-bubbles in an opaque tube using X-ray micro-imaging technique)

  • 김석;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.45-46
    • /
    • 2003
  • The x-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to different refractive index. Micro-bubbles of $20\~120{\mu}m$ diameter moving upward in an opaque tube $(\phi=2.7mm)$ were tested. For two different working fluids of tap water and DI water, the measured velocity of micro-bubbles is roughly proportional to the square of bubble size.

  • PDF

Three Dimensional Volume Reconstruction of Polyhedral Objects Using X-ray Stereo Images

  • Roh, Young-Jun;Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.28.2-28
    • /
    • 2001
  • Three dimensional shape measurement techniques are widely needed in industries for product quality monitoring and control. X-ray imaging method is a promising technology to achieve three-dimensional Information, both the surface and inner structure of an object, since it can overcome the limitations of conventional visual or optical methods such as an occlusion problem or surface reflection properties. In this paper, we propose three dimensional volume reconstruction method based on x-ray stereo imaging technology. Here, the stereo images of an object from two different views are taken by changing the object pose rather than moving imaging plane as in conventional stereo vision method. We propose a series of image processing techniques to extract the features efficiently from x-ray images, where the occluded features in case of normal camera vision could be found ...

  • PDF

Spiral CT의 고속 영상재구성 알고리즘에 관한 연구 (A Study on the Fast Image Reconstruction Algorithm for Spiral CT)

  • 허창원;진승오;이재덕;허영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3207-3209
    • /
    • 2000
  • X-ray CT(Computed Tomography) has been a good modality for non-invasive diagnosis and recently, Conventional CT has been replaced rapidly with Spiral CT in recent. In X-ray CT, spiral scanning has various advantages such as better image quality, reduced scan time (in a single breath-hold), a lower x-ray dose. But, it requires very fast and high performance image processing system to reconstruct slice images from spiral scanning. This paper describes the fast image reconstruction techniques with filtered back projection from the viewpoints of fast algorithm as well as hardware implementation for real-time imaging.

  • PDF

Numerical Modeling and Experiment for Single Grid-Based Phase-Contrast X-Ray Imaging

  • Lim, Hyunwoo;Lee, Hunwoo;Cho, Hyosung;Seo, Changwoo;Lee, Sooyeul;Chae, Byunggyu
    • 한국의학물리학회지:의학물리
    • /
    • 제28권3호
    • /
    • pp.83-91
    • /
    • 2017
  • In this work, we investigated the recently proposed phase-contrast x-ray imaging (PCXI) technique, the so-called single grid-based PCXI, which has great simplicity and minimal requirements on the setup alignment. It allows for imaging of smaller features and variations in the examined sample than conventional attenuation-based x-ray imaging with lower x-ray dose. We performed a systematic simulation using a simulation platform developed by us to investigate the image characteristics. We also performed a preliminary PCXI experiment using an established a table-top setup to demonstrate the performance of the simulation platform. The system consists of an x-ray tube ($50kV_p$, 5 mAs), a focused-linear grid (200-lines/inch), and a flat-panel detector ($48-{\mu}m$ pixel size). According to our results, the simulated contrast of phase images was much enhanced, compared to that of the absorption images. The scattering length scale estimated for a given simulation condition was about 117 nm. It was very similar, at least qualitatively, to the experimental contrast, which demonstrates the performance of the simulation platform. We also found that the level of the phase gradient of oriented structures strongly depended on the orientation of the structure relative to that of linear grids.

Comparison of X-ray computed tomography and magnetic resonance imaging to detect pest-infested fruits: A pilot study

  • Kim, Taeyun;Lee, Jaegi;Sun, Gwang-Min;Park, Byung-Gun;Park, Hae-Jun;Choi, Deuk-Soo;Ye, Sung-Joon
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.514-522
    • /
    • 2022
  • Non-destructive testing (NDT) technology is a widely used inspection method for agricultural products. Compared with the conventional inspection method, there is no extensive sample preparation for NDT technology, and the sample is not damaged. In particular, NDT technology is used to inspect the internal structure of agricultural products infested by pests. The introduction and spread of pests during the import and export process can cause significant damage to the agricultural environment. Until now, pest detection in agricultural products and quarantine processes have been challenging because they used external inspection methods. However, NDT technology is advantageous in these inspection situations. In this pilot study, we investigated the feasibility of X-ray computed tomography (X-ray CT) and magnetic resonance imaging (MRI) to identify pest infestation in agricultural products. Three kinds of artificially pest-infested fruits (mango, tangerine, and chestnut) were non-destructively inspected using X-ray CT and MRI. X-ray CT was able to identify all pest infestations in fruits, while MRI could not detect the pest-infested chestnut. In addition, X-ray CT was superior to the quarantine process than MRI based on the contrast-to-noise ratio (CNR), image acquisition time, and cost. Therefore, X-ray CT is more appropriate for the pest quarantine process of fruits than MRI.

무정형 실리콘(a-Si : H) 디지털 X-선 영상기기의 개발을 위한 Monte Carlo 컴퓨터 모의실험연구 (Monte Carlo Studies on an Amorphous Silicon (a-Si:H) Digital X-Ray Imaging Device)

  • 이형구;신경섭
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권3호
    • /
    • pp.225-232
    • /
    • 1998
  • 무정형 실리콘을 기반으로 한 X-선 영상기기에 대한 Monte Carlo 시뮬레이션 결과를 기술하였다. 무정형 실리콘 X-선 영상기기의 특성을 조사하고 최적의 설계변수들을 제공하기 위하여 Monte Carlo 시뮬레이션을 수행하였다. 본 연구의 목적에 맞도록 Monte Carlo simulation codes를 개발하였고, X-선 최대전압, 알루미늄 필터 두께, Cal(T1)두께, 그리고 무정형 실리콘 광다이오우드 픽셀 크기들을 변화시키면서 무정형 실리콘 X-선 영상기기의 계측 효율과 해상도의 변화를 연구하였다. 60kVP-120kVp의 X-선에 대하여, CsI(TI)의 두께가 300um-500um일 때 계측효율은 70%-95% 였고 에너지 흡수효율은 40%-70%였다. 시뮬레이션 결과로부터, 무정형 실리콘 픽셀크기와 Csl(TI) 두께가 해상도를 결정하는 가장 주된 요소임이 밝혀졌다. 본 연구에서 개발한 시뮬레이션을 사용하여 감도와 해상도를 최적화할 수 있는 적절한 픽셀 크기와 CsI(TI) 두께를 찾아낼 수 있었다.

  • PDF