• Title/Summary/Keyword: Wurtzite structure

Search Result 127, Processing Time 0.03 seconds

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

Arsenic Doping of ZnO Thin Films by Ion Implantation (이온 주입법을 이용한 ZnO 박막의 As 도핑)

  • Choi, Jin Seok;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.347-352
    • /
    • 2016
  • ZnO with wurtzite structure has a wide band gap of 3.37 eV. Because ZnO has a direct band gap and a large exciton binding energy, it has higher optical efficiency and thermal stability than the GaN material of blue light emitting devices. To fabricate ZnO devices with optical and thermal advantages, n-type and p-type doping are needed. Many research groups have devoted themselves to fabricating stable p-type ZnO. In this study, $As^+$ ion was implanted using an ion implanter to fabricate p-type ZnO. After the ion implant, rapid thermal annealing (RTA) was conducted to activate the arsenic dopants. First, the structural and optical properties of the ZnO thin films were investigated for as-grown, as-implanted, and annealed ZnO using FE-SEM, XRD, and PL, respectively. Then, the structural, optical, and electrical properties of the ZnO thin films, depending on the As ion dose variation and the RTA temperatures, were analyzed using the same methods. In our experiment, p-type ZnO thin films with a hole concentration of $1.263{\times}10^{18}cm^{-3}$ were obtained when the dose of $5{\times}10^{14}$ As $ions/cm^2$ was implanted and the RTA was conducted at $850^{\circ}C$ for 1 min.

Effect of Growth Temperature on the Properties of Hydrogenation Al-doped ZnO Films (기판 온도에 따른 수소화된 Al-doped ZnO 박막의 특성 변화)

  • Tark, Sung-Ju;Kang, Min-Gu;Lee, Seung-Hoon;Kim, Won-Mok;Lim, Hee-Jin;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.629-633
    • /
    • 2007
  • This study examined the effect of growth temperature on the electrical and optical properties of hydrogenated Al-doped zinc oxide (AZO:H) thin films deposited by rf magnetron sputtering using a ceramic target (98 wt.% ZnO, 2 wt.% $Al_2O_3$). Various AZO films on glass were prepared by changing the substrate temperature from room temperature to $200^{\circ}C$. It was shown that intentionally incorporated hydrogen plays an important role on the electrical properties of AZO : H films by increasing free carrier concentration. As a result, in the 2% $H_2$ addition at the growth temperature of $150^{\circ}C$, resistivity of $3.21{\times}10^{-4}{\Omega}{\cdot}cm$, mobility of $21.9cm^2/V-s$, electric charge carrier concentration of $9.35{\times}10^{20}cm^{-3}$ was obtained. The AZO : H films show a hexagonal wurtzite structure preferentially oriented in the (002) crystallographic direction.

Field Emission Characteristics of ZnO Nanowires Grown by Hydrothermal Method (수열합성법에 의해 성장된 ZnO 나노와이어의 전계방출 특성)

  • No, Im-Jun;Kim, Sung-Hyun;Shin, Paik-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.101-105
    • /
    • 2010
  • We fabricated FEDs(Filed emission devices) based on ZnO nanowires. The ZnO nanowires were synthesized on Au thin films by hydrothermal method at the temperature of 90[$^{\circ}C$] on hot plate. In order to form tips of the ZnO nanowire, SDS(Sodium Dodecyl Sulfate) was mixed in O.05-0.3[wt%] solution as capping material. After 2 hour growth, we obtained nanowires of chain form The high-purity nanowires showed sharp tip geometry with a wurtzite structure. The field emission properties of the ZnO nanowires were investigated in high vacuum chamber. The turn-on field for the ZnO nanowires was found to be about 4.1[V/${\mu}m$] at a current density of 0.1[${\mu}A/cm^2$].

Growth and Structural Characterizations of CdSe/GaAs Eppilayers by Electron Beam Evaporation Method

  • Yang, Dong-Ik;Sung-Mun ppark
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.02a
    • /
    • pp.36-36
    • /
    • 1995
  • The cubic (zinc blende) CdSe eppilayers were grown on GaAs(100) substrates by electron beam (e-beam) evapporation technique. X-ray scans with copper $K\alpha$ radiation indicate that the CdSe eppilayers are zinc blende. The lattice pparameter obtained from the (400) reflection is 6.077$\AA$, which is in excellent agreement with the value repported in the literature for zinc blende CdSe. The orientation of as-grown CdSe eppilayer is determined by electron channeling ppatterns(ECpp). The crystallinity of heteroeppitaxial CdSe layers were investigated based on the double crystal x-ray rocking curve(DCRC). The deppendence of the rocking curve width on layer thickness was studied. The FWHM(full width at half maximum) of CdSe eppilayers grown on GaAs(100) substrates is decreasing with increasing eppilayer thickness. The carrier concentration and mobility of the as-grown eppilayers deduced Hall data by van der ppauw method, are about 7$\times$1017 cm-3 and 2$\times$102 $\textrm{cm}^2$ / sec at room tempperature, resppectively. The energy gapp was determinded from the pphotocurrent sppectrum. In pphotocurrent sppectrum of a 1-${\mu}{\textrm}{m}$-thick CdSe eppilayer at 30K, the ppeak at 1.746 eV is due to the free exciton of cubic CdSe. In summary, We have shown that eppilayers of zinc blende CdSe can be grown on GaAs(100) substrates by e-beam, desppite the large mismatch between eppilayer and substrate, as well as the natural ppreference for CdSe to form in the wurtzite structure.

  • PDF

A Study on the High Quality and Low Cost Fabrication Technology of ZnO Thin Films for Solar Cell Applications (태양전지 응용을 위한 고품위 및 저가격 ZnO 박막 제조에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.191-196
    • /
    • 2010
  • Aluminum doped zinc oxide (AZO) films have been prepared on Coming 7059 glass substrates by r.f. magnetron sputtering method. A powder target instead of a conventional sintered ceramic target was used in order to improve the utilization efficiency of the target and reduce the cost of the film deposition process. The influence of sputter pressure on the structural, electrical, and optical properties of AZO films were studied. The AZO films had hexagonal wurtzite structure with a preferred c-axis orientation, regardless of sputter pressure and target types. The crystallinity and degree of orientation was increased by increasing the sputter pressure. For higher sputtering pressures, a reduction of the resistivity was observed due to a increase on the mobility and the carrier concentration. The lowest resistivity of $6.5{\times}10^{-3}\;{\Omega}-cm$ and the average transmittance of 80% can be obtained for films deposited at 15 mTorr.

Enhanced pH Response of Solution-gated Graphene FET by Using Vertically Grown ZnO Nanorods on Graphene Channel

  • Kim, B.Y;Jang, M.;Shin, K.-S.;Sohn, I.Y;Kim, S.-W.;Lee, N.-E
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.434.2-434.2
    • /
    • 2014
  • We observe enhanced pH response of solution-gated field-effect transistors (SG-FET) having 1D-2D hybrid channel of vertical grown ZnO nanorods grown on CVD graphene (Gr). In recent years, SG-FET based on Gr has received a lot of attention for biochemical sensing applications, because Gr has outstanding properties such as high sensitivity, low detection limit, label-free electrical detection, and so on. However, low-defect CVD Gr has hardly pH responsive due to lack of hydroxyl group on Gr surface. On the other hand, ZnO, consists of stable wurtzite structure, has attracted much interest due to its unique properties and wide range of applications in optoelectronics, biosensors, medical sciences, etc. Especially, ZnO were easily grown as vertical nanorods by hydrothermal method and ZnO nanostructures have higher sensitivity to environments than planar structures due to plentiful hydroxyl group on their surface. We prepared for ZnO nanorods vertically grown on CVD Gr (ZnO nanorods/Gr hybrid channel) and to fabricate SG-FET subsequently. We have analyzed hybrid channel FETs showing transfer characteristics similar to that of pristine Gr FETs and charge neutrality point (CNP) shifts along proton concentration in solution, which can determine pH level of solution. Hybrid channel SG-FET sensors led to increase in pH sensitivity up to 500%, compared to pristine Gr SG-FET sensors. We confirmed plentiful hydroxyl groups on ZnO nanorod surface interact with protons in solution, which causes shifts of CNP. The morphology and electrical characteristics of hybrid channel SG-FET were characterized by FE-SEM and semiconductor parameter analyzer, respectively. Sensitivity and sensing mechanism of ZnO nanorods/Gr hybrid channel FET will be discussed in detail.

  • PDF

Characteristics and Preparation of Gas Sensor Using Nano Indium Coated ZnO:In (나노 Indium을 부착한 ZnO:In 가스센서의 제작 및 특성)

  • Jung, Jong-Hun;Yu, Yun-Sik;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.486-490
    • /
    • 2011
  • Nano-indium-coated ZnO:In thick films were prepared by a hydrothermal method. ZnO:In gas sensors were fabricated by a screen printing method on alumina substrates. The gas sensing properties of the gas sensors were investigated for hydrocarbon gas. The effects of the indium concentration of the ZnO:In gas sensors on the structural and morphological properties were investigated by X-ray diffraction and scanning electron microscopy. XRD patterns revealed that the ZnO:In with wurtzite structure was grown with (1 0 0), (0 0 2), and (1 0 1) peaks. The quantity of In coating on the ZnO surface increased with increasing In concentration. The sensitivity of the ZnO:In sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of the ZnO:In sensors was observed at the In 6 wt%. The response and recovery times of the 6 wt% indiumcoated ZnO:In gas sensors were 19 s and 12 s, respectively.

Response Characteristics of Thick Film Sensors Using Nano ZnO:Ni for Hydrocarbon Gas (나노 ZnO:Ni를 이용한 후막 가스센서의 탄화수소계 가스에 대한 감응특성)

  • Yoon, So-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • The effects of a Ni coating on the sensing properties of nano ZnO:Ni based gas sensors were studied for $CH_4$ and $CH_3CH_2CH_3$ gases. Nano ZnO sensing materials were prepared by the hydrothermal reaction method. The Ni coatings on the nano ZnO surface were deposited by the hydrolysis of zinc chloride with $NH_4OH$. The weight % of Ni coating on the ZnO surface ranged from 0 to 10 %. The nano ZnO:Ni gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the nano ZnO : Ni sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns showed that nano ZnO : Ni powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The particle size of nano ZnO powders was about 250 nm. The sensitivity of nano ZnO:Ni based sensors for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity of the ZnO:Ni sensor to $CH_4$ gas and $CH_3CH_2CH_3$ gas was observed at Ni 4 wt%. The response and recovery times of 4 wt% Ni coated ZnO:Ni gas sensors were 14 s and 15 s, respectively.

Effects of Precursor Concentration and Current on Properties of ZnO Nanorod Grown by Electrodeposition Method (전착법으로 성장된 산화아연 나노막대의 특성에 전구체 농도 및 전착 전류가 미치는 효과)

  • Park, Youngbin;Nam, Giwoong;Park, Seonhee;Moon, Jiyun;Kim, Dongwan;Kang, Hae Ri;Kim, Haeun;Lee, Wookbin;Leem, Jae-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.198-203
    • /
    • 2014
  • ZnO nanorods have been deposited on ITO glass by electrodeposition method. The optimization of two process parameters (precursor concentration and current) has been studied in order to control the orientation, morphology, and optical property of the ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results show that ZnO nanorods with a hexagonal form and wurtzite crystal structure have a c-axis orientation and higher intensity for the ZnO (002) diffraction peaks. Both high precursor concentration and high electrodeposition current cause the increase in nanorods diameter and coverage ratio. ZnO nanorods show a strong UV (3.28 eV) and a weak visible (1.9 ~ 2.4 eV) bands.