DOI QR코드

DOI QR Code

Arsenic Doping of ZnO Thin Films by Ion Implantation

이온 주입법을 이용한 ZnO 박막의 As 도핑

  • Choi, Jin Seok (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • An, Sung Jin (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 최진석 (금오공과대학교 신소재공학부) ;
  • 안성진 (금오공과대학교 신소재공학부)
  • Received : 2016.04.04
  • Accepted : 2016.04.28
  • Published : 2016.06.27

Abstract

ZnO with wurtzite structure has a wide band gap of 3.37 eV. Because ZnO has a direct band gap and a large exciton binding energy, it has higher optical efficiency and thermal stability than the GaN material of blue light emitting devices. To fabricate ZnO devices with optical and thermal advantages, n-type and p-type doping are needed. Many research groups have devoted themselves to fabricating stable p-type ZnO. In this study, $As^+$ ion was implanted using an ion implanter to fabricate p-type ZnO. After the ion implant, rapid thermal annealing (RTA) was conducted to activate the arsenic dopants. First, the structural and optical properties of the ZnO thin films were investigated for as-grown, as-implanted, and annealed ZnO using FE-SEM, XRD, and PL, respectively. Then, the structural, optical, and electrical properties of the ZnO thin films, depending on the As ion dose variation and the RTA temperatures, were analyzed using the same methods. In our experiment, p-type ZnO thin films with a hole concentration of $1.263{\times}10^{18}cm^{-3}$ were obtained when the dose of $5{\times}10^{14}$ As $ions/cm^2$ was implanted and the RTA was conducted at $850^{\circ}C$ for 1 min.

Keywords

References

  1. T. Atsushi, K. Masashi, O. Akira, O. Takeyoshi, O. Keita, O. Hideo, F. C. Shigefusa and K. Masashi, Jpn. J. Appl. Phys., 44, L643 (2005). https://doi.org/10.1143/JJAP.44.L643
  2. S. Chu, M. Olmedo, Z. Yang, J. Kong and J. Liu, Appl. Phys. Lett., 93, 181106 (2008). https://doi.org/10.1063/1.3012579
  3. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Cryst. Growth, 225, 110 (2001). https://doi.org/10.1016/S0022-0248(01)00830-2
  4. A. Janotti and C. G. V. Walle, Phys. Rev. B, 76, 165202 (2007). https://doi.org/10.1103/PhysRevB.76.165202
  5. V. Vaithianathan, B.-T. Lee and S. S. Kim, J. Appl. Phys., 98, 043519 (2005). https://doi.org/10.1063/1.2011775
  6. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, Appl. Phys. Lett., 81, 1830 (2002). https://doi.org/10.1063/1.1504875
  7. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga and A. Shimizu, Jpn. J. Appl. Phys., 36, L1453 (1997). https://doi.org/10.1143/JJAP.36.L1453
  8. D.-K. Hwang, H.-S. Kim, J.-H. Lim, J.-Y. Oh, J.-H. Yang, S.-J. Park, K.-K. Kim, D. C. Look and Y. S. Park, Appl. Phys. Lett., 86, 151917 (2005). https://doi.org/10.1063/1.1895480
  9. Y. Cao, L. Miao, S. Tanemura, M. Tanemura, Y. Kuno and Y. Hayashi, Appl. Phys. Lett., 88, 251116 (2006). https://doi.org/10.1063/1.2215618
  10. Y. F. Hsu, Y. Y. Xi, K. H. Tam, A. B. Djurisi , J. Luo, C. C. Ling, C. K. Cheung, A. M. C. Ng, W. K. Chan, X. Deng, C. D. Beling, S. Fung, K. W. Cheah, P. W. K. Fong and C. C. Surya, Adv. Funct. Mater., 18, 1020 (2008). https://doi.org/10.1002/adfm.200701083
  11. G. Braunstein, A. Muraviev, H. Saxena, N. Dhere, V. Richter and R. Kalish, Appl. Phys. Lett., 87, 192103 (2005). https://doi.org/10.1063/1.2128064
  12. J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang and K. V. Rao, Prog. Mater Sci., 58, 874 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.002
  13. Q. L. Gu, C. C. Ling, G. Brauer, W. Anwand, W. Skorupa, Y. F. Hsu, A. B. Djurisi , C. Y. Zhu, S. Fung and L. W. Lu, Appl. Phys. Lett., 92, 222109 (2008). https://doi.org/10.1063/1.2940204
  14. Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan and K. L. Teo, Appl. Phys. Lett., 93, 253107 (2008). https://doi.org/10.1063/1.3054639
  15. G. Perillat-Merceroz, F. Donatini, R. Thierry, P.-H. Jouneau, P. Ferret and G. Feuillet, J. Appl. Phys., 111, 083524 (2012). https://doi.org/10.1063/1.4704697
  16. Y. J. Chen, H.-W. Jen, M.-S. Wong, C.-H. Ho, J.-H. Liang, J.-T. Liu and J.-H. Pang, J. Cryst. Growth, 362, 193 (2013). https://doi.org/10.1016/j.jcrysgro.2012.03.060
  17. G. Manabu, O. Naoko, O. Kenichi and K. Mikio, Jpn. J. Appl. Phys., 42, 481 (2003). https://doi.org/10.1143/JJAP.42.481
  18. M. Yuan, H. Yuan, Q. Jia, Y. Chen, X. Jiang and H. Wang, J. Phys. D: Appl. Phys., 45, 85103 (2012). https://doi.org/10.1088/0022-3727/45/8/085103
  19. W. Lee, M.-C. Jeong and J.-M. Myoung, Appl. Phys. Lett., 85, 6167 (2004). https://doi.org/10.1063/1.1840124
  20. T. S. Jeong, M. S. Han, C. J. Youn and Y. S. Park, J. Appl. Phys., 96, 175 (2004). https://doi.org/10.1063/1.1756220
  21. U. Ilyas, R. S. Rawat, T. L. Tan, P. Lee, R. Chen, H. D. Sun, L. Fengji and S. Zhang, J. Appl. Phys. 110, 093522 (2011). https://doi.org/10.1063/1.3660284