• Title/Summary/Keyword: Wright

Search Result 320, Processing Time 0.021 seconds

NEW GENERALIZATION OF THE WRIGHT SERIES IN TWO VARIABLES AND ITS PROPERTIES

  • Belafhal, Abdelmajid;Chib, Salma;Usman, Talha
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.177-193
    • /
    • 2022
  • The main aim of this paper is to introduce a new generalization of the Wright series in two variables, which is expressed in terms of Hermite polynomials. The properties of the freshly defined function involving its auxiliary functions and the integral representations are established. Furthermore, a Gauss-Hermite quadrature and Gaussian quadrature formulas have been established to evaluate some integral representations of our main results and compare them with our theoretical evaluations using graphical simulations.

ON PARTIAL SUMS OF FOUR PARAMETRIC WRIGHT FUNCTION

  • Din, Muhey U
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.681-692
    • /
    • 2022
  • Special functions and Geometric function theory are close related to each other due to the surprise use of hypergeometric function in the solution of the Bieberbach conjecture. The purpose of this paper is to provide a set of sufficient conditions under which the normalized four parametric Wright function has lower bounds for the ratios to its partial sums and as well as for their derivatives. The sufficient conditions are also obtained by using Alexander transform. The results of this paper are generalized and also improved the work of M. Din et al. [15]. Some examples are also discussed for the sake of better understanding of this article.

CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED k-BESSEL FUNCTION OF FIRST KIND

  • Mondal, Saiful Rahman;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Generalized integral formulas involving the generalized modified k-Bessel function $J^{b,c,{\gamma},{\lambda}}_{k,{\upsilon}}(z)$ of first kind are expressed in terms generalized Wright functions. Some interesting special cases of the main results are also discussed.

SOME INTEGRALS ASSOCIATED WITH MULTIINDEX MITTAG-LEFFLER FUNCTIONS

  • KHAN, N.U.;USMAN, T.;GHAYASUDDIN, M.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.249-255
    • /
    • 2016
  • The object of the present paper is to establish two interesting unified integral formulas involving Multiple (multiindex) Mittag-Leffler functions, which is expressed in terms of Wright hypergeometric function. Some deduction from these results are also considered.

SOME COMPOSITION FORMULAS OF JACOBI TYPE ORTHOGONAL POLYNOMIALS

  • Malik, Pradeep;Mondal, Saiful R.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.677-688
    • /
    • 2017
  • The composition of Jacobi type finite classes of the classical orthogonal polynomials with two generalized Riemann-Liouville fractional derivatives are considered. The outcomes are expressed in terms of generalized Wright function or generalized hypergeometric function. Similar composition formulas are also obtained by considering the generalized Riemann-Liouville and $Erd{\acute{e}}yi-Kober$ fractional integral operators.

A NEW CLASS OF EULER TYPE INTEGRAL OPERATORS INVOLVING MULTIINDEX MITTAG-LEFFLER FUNCTION

  • Khan, Nabiullah;Ghayasuddin, Mohd.;Shadab, Mohd
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.691-700
    • /
    • 2018
  • The main object of the present research paper is to establish two (potentially) useful Euler type integrals involving multiindex Mittag-Leffler functions, which are expressed in terms of Wright hypergeometric functions. Some deductions of the main results are also indicated.

THE COMPOSITION OF HURWITZ-LERCH ZETA FUNCTION WITH PATHWAY INTEGRAL OPERATOR

  • Jangid, Nirmal Kumar;Joshi, Sunil;Purohit, Sunil Dutt;Suthar, Daya Lal
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.267-276
    • /
    • 2021
  • The aim of the present investigation is to establish the composition formulas for the pathway fractional integral operator connected with Hurwitz-Lerch zeta function and extended Wright-Bessel function. Some interesting special cases have also been discussed.

NEW SEVEN-PARAMETER MITTAG-LEFFLER FUNCTION WITH CERTAIN ANALYTIC PROPERTIES

  • Maryam K. Rasheed;Abdulrahman H. Majeed
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.99-111
    • /
    • 2024
  • In this paper, a new seven-parameter Mittag-Leffler function of a single complex variable is proposed as a generalization of the standard Mittag-Leffler function, certain generalizations of Mittag-Leffler function, hypergeometric function and confluent hypergeometric function. Certain essential analytic properties are mainly discussed, such as radius of convergence, order, type, differentiation, Mellin-Barnes integral representation and Euler transform in the complex plane. Its relation to Fox-Wright function and H-function is also developed.