• Title/Summary/Keyword: Work zone capacity

Search Result 30, Processing Time 0.025 seconds

A Study on Level-of-Service Changes of Expressway in Accordance with the Revision of Traffic Capacity at Work-Zone (교통용량 개정에 따른 고속도로 공사구간의 서비스 수준에 대한 연구)

  • Ryu, SungWoo;Park, Kwon-Jea;Han, SeungHwan;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.109-117
    • /
    • 2014
  • PURPOSES : This study analyzes the available working time at work-zone on the Expressway in accordance to the new capacity manual. METHODS : Sensitivity analysis on variables were conducted to calculate the adjusted capacity at work-zone based on previous researches. RESULTS : The main factors which affect available working time at the work-zone were its capacity, number of lanes, terrain and lane width. Other factors have minimal effect on the available working time. Based on the analysis, a calendar of lane closures was suggested. CONCLUSIONS : A series of studies concluded that the capacity at work-zone in the new capacity manual reduced to 76-82% of the existing manual. As such, the available working time decreased. Furthermore, the factors affecting the available working time needs to be considered when making a plan to rehabilitate the distressed pavement.

Estimation of Capacity at Two-Lane Freeway Work Zone Using Traffic Flow Models of Each Vehicle-Type (차종별 교통류 모형을 이용한 편도 2차로 고속도로 공사구간 용량 산정)

  • Park, Yong-Jin;Kim, Jong-Sik
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.195-202
    • /
    • 2011
  • The purpose of this study is to estimate the capacity of two-lane freeway work zone blocking one lane using traffic flow models of each vehicle-type. Firstly, three traffic flow models of three different vehicle-types were developed using the data collected from each at the beginning and the ending point of the work zone. For each model, the maximum flow rate of three vehicle-types were calculated respectively. Maximum flow rate at the work zone was recalculated using passenger car equivalent value and percentage of vehicle-type. Secondly, traffic flow model using passenger car equivalent volume data was developed using the data collected from each at the beginning and the ending point of the work zone. Maximum flow rate for the work zone was calculated along. Two values of maximum flow rates through the work zone were compared and evaluated as the capacity of the work zone. This study found that the maximum flow rate of the work zone at the beginning point was less than that at the ending point because of impedance such as lane changing behaviors before entering the work zone. The capacity of two-lane freeway work zone blocking one lane was estimated 1,800pcphpl.

Determination of Base Capacity Values for Short-Term Freeway Work Zone (고속도로 단기공사구간 기본용량 결정에 관한 연구)

  • Kim, Sang Gu;Hong, Gil Seong
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2013
  • Lane closure in freeway work zone due to maintenance and repair of freeway facilities results in abrupt change of traffic flow. Sudden change of traffic flow results strong interactions among vehicles, and reduces capacity compared to the ordinary traffic condition. Such capacity reduction is likely to cause congestion, traffic queues, and economic loss cost. This study aims to determine the base capacity for a short-term freeway work zone that can be used to establish a work zone schedule in advance without any traffic impact. First, the research collected detector data and schedule data of road works on all freeways in Korea. Second, the research determined 23 study sites finding the capacity values of work zone after matching two kinds of data. All study sites had varying characteristics regarding traffic flow being adjacent to work zone during road works. The capacity values were reviewed in terms of lane closure configuration, the types of work, and design speed. Finally, research proposed capacity values for a short-term freeway work zone with the design speeds of 100 kph, 120 kph and 1,700 pcphpl, 1,750 pcphpl, respectively.

Capacity of Urban Freeway Work Zones (도시 고속도로 공사구간 용량 산정)

  • Lee, Mi Ri;Kim, Do-Gyeong;Kim, Hyo-Seung;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1123-1130
    • /
    • 2013
  • This paper aims to estimate work zone base capacity by the number of lanes for urban freeway. To do this, data were collected from the field survey and the database system maintained by traffic control center, and analyzed with four different methods such as the average maximum observation flow rate, headway, regression analysis, and parameter inspection. The work zone base capacity for urban freeway is estimated based on the average maximum observation flow rate and headway method, which are more reliable methods compared to others. The average capacity is 1,650pcphpl when the design speed is 80km/h. The capacity of four lanes one-way work zones was about 1,700pcphpl, while one of 2 lanes one-way work zones was about 1,600pcphpl. The capacity reduction rates for each are 0.15 and 0.2, respectively. The smaller the number of lane is, the more base capacity is reduced. For verification of results, we estimate the capacity by simulation analysis using PARAMICS, and compare with analytical results by a statistical method. This research can be used for efficient and systemic management of work zone in the urban freeway.

Estimation of Road Capacity at Two-Lane Freeway Work Zones Considering the Rate of Heavy Vehicles (중차량 비에 따른 편도 2차로 고속도로 공사구간 도로 용량 추정)

  • Ko, Eunjeong;Kim, Hyungjoo;Park, Shin Hyoung;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.48-61
    • /
    • 2020
  • The objective of this study is to estimate traffic capacity based on the heavy-vehicle ratio in a two-lane freeway work zone where one lane is blocked by construction. For this, closed circuit television (CCTV) video data of the freeway work zone was collected, and the congestion at an upstream point was observed. The traffic volume at a downstream point was analyzed after a bottleneck was created by the blockage due to the upstream congestion. A distribution model was estimated using observed-time headway, and the road capacity was analyzed using a goodness-of-fit test. Through this process, the general capacity and an equation for capacity based on the heavy-vehicle ratio passing through the work zone were presented. Capacity was estimated to be 1,181~1,422 passenger cars per hour per lane (pcphpl) at Yeongdong, and 1,475~1,589pcphpl at Jungbu Naeryuk. As the ratio of heavy vehicles increased, capacity gradually decreased. These findings can contribute to the proper capacity estimation and efficient traffic operation and management for two-lane freeway work zones that block one lane due to a work zone.

Capacity Estimation Models for Work-zones Under Traffic Signal Influence and the Empirical Validation (신호영향권 하 도로공사구간에서의 용량산정모형 개발과 실증)

  • Shin, Chi-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This paper focuses on the development of analytical models for estimating the changes in saturation flow rates (SFR) at the stop-lines of a signalized intersection due to the existence of nearby work-zones, and thereby calculating the prevailing capacity values for specific lane groups. Major changes were incorporated in the logics of previous models and significant revisions have been made to secure the accuracy and simplicity. Furthermore, much attention was paid to model validation by making comparisons to both extensive simulation results and empirical data from various sites. It was found that SFRs are highly sensitive to the location of work-zones, the distance to each work-zone from the stop-line of a concerned approach, the number of lanes open and closed, and the effective green time. Using such geometric and operating conditions that constitute work-zone environment, the proposed models successfully estimated SFR values with a miniscule margin of error.

Application of BIPV System Functioned as Solar Collector (태양열 집열기 기능을 갖는 BIPV 시스템의 응용)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.953-958
    • /
    • 2006
  • Perimeter zone has been reinforced by active systems, such as fan-coil units, because it causes an increase in heating and cooling loads, dew condensation in winter, or discomfort with cold-draft to residents in buildings, through poor insulation by light-weighed skin due to progressing multi-storied buildings and skyscrapers. However, because these active systems raise Its capacity so that fossil fuel is used as much as they are added, and ultimately, greenhouse effect is urged, we proposed BIPV system functioned as solar collector which can substitute active system. As an early stage, heat balance equation in steady-state by Fortran was used not only for pre-heating effect and electric power capacity during the day in winter, but also for electric power capacity during day in slimmer and sky radiation effect during night in summer. Especially, we should have considered shading on PV, since even a little bit of it makes the efficiency too low for the PV to work. Still, when the flux of pre-heated air was increased to make air-barrier, its temperature was not enough to make it because the speed of heat exchange was too fast to warm up the air, thus the capacity to meet the condition was evaluated, and electric power from PV was made used for it.

  • PDF

Cyclic test for beam-to-column abnormal joints in steel moment-resisting frames

  • Liu, Zu Q.;Xue, Jian Y.;Peng, Xiu N.;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1177-1195
    • /
    • 2015
  • Six specimens are tested to investigate the cyclic behavior of beam-to-column abnormal joints in steel moment-resisting frames, which are designed according to the principle of strong-member and weak-panel zone. Key parameters include the axial compression ratio of column and the section depth ratio of beams. Experimental results indicate that four types of failure patterns occurred during the loading process. The $P-{\Delta}$ hysteretic loops are stable and plentiful, but have different changing tendency at the positive and negative direction in the later of loading process due to mechanical behaviors of specimens. The ultimate strength tends to increase with the decrease of the section depth ratio of beams, but it is not apparent relationship to the axial compression ratio of column, which is less than 0.5. The top panel zone has good deformation capacity and the shear rotation can reach to 0.04 rad. The top panel zone and the bottom panel zone don't work as a whole. Based on the experimental results, the equation for shear strength of the abnormal joint panel zone is established by considering the restriction of the bottom panel zone to the top panel zone, which is suitable for the abnormal joint of H-shaped or box column and beams with different depths.

The Fundamental Research on Lifting-Work for Excavator Safety Management (굴삭기 안전 관리를 위한 인양작업에 관한 기초연구)

  • Lee, Yongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.811-818
    • /
    • 2011
  • Though an excavator is classified as an equipment utilizing a shovel in earthworks, it has been frequently used in lifting work. In this view, lifting capacity is classified as the main functions of the excavator. Thus, its accurate functions need to be provided. However, in domestic conditions, the necessity for the functions of lifting capacity are not perceived. This study shows 1) Many researches about lifting-work of excavators abroad are used as basic data necessary for domestic introduction. 2) For domestic excavators without the information of lifting-work, methodologies of lifting-work available are suggested and reviewed. 3)Lifting zones are divided into safety and caution lifting zones. The information on lifting capacity and lifting zones will be able to used as objective and substantive bases to operational planning and safety management.

Finite element parametric study of RC beams strengthened with carbon nanotubes modified composites

  • Irshidat, Mohammad R.;Alhusban, Rami S.
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.131-141
    • /
    • 2021
  • This paper aims at investigating the capability of different FRP/concrete interface models to predict the effect of carbon nanotubes on the flexural behavior of RC beams strengthened with CFRP. Three different interfacial bond models are proposed to simulate the adhesion between CFRP composites and concrete, namely: full bond, nonlinear spring element, and cohesive zone model. 3D Nonlinear finite element model is developed then validated using experimental work conducted by the authors in a previous investigation. Cohesive zone model (CZM) has the best agreement with the experimental results in terms of load-deflection response. CZM is the only bond model that accurately predicted the cracks patterns and failure mode of the strengthened RC beams. The FE model is then expanded to predict the effect of bond strength on the flexural capacity of RC beams strengthened with externally bonded CNTs modified CFRP composites using CZM bond model. The results reveal that the flexural capacity of the strengthened beams increases with increasing the bond strength value. However, only 23% and 22% of the CFRP stress and strain capacity; in the case of full bond; can be utilized before failure.