Browse > Article
http://dx.doi.org/10.12989/cac.2021.27.2.131

Finite element parametric study of RC beams strengthened with carbon nanotubes modified composites  

Irshidat, Mohammad R. (Department of Civil Engineering, Jordan University of Science and Technology)
Alhusban, Rami S. (Department of Civil Engineering, Jordan University of Science and Technology)
Publication Information
Computers and Concrete / v.27, no.2, 2021 , pp. 131-141 More about this Journal
Abstract
This paper aims at investigating the capability of different FRP/concrete interface models to predict the effect of carbon nanotubes on the flexural behavior of RC beams strengthened with CFRP. Three different interfacial bond models are proposed to simulate the adhesion between CFRP composites and concrete, namely: full bond, nonlinear spring element, and cohesive zone model. 3D Nonlinear finite element model is developed then validated using experimental work conducted by the authors in a previous investigation. Cohesive zone model (CZM) has the best agreement with the experimental results in terms of load-deflection response. CZM is the only bond model that accurately predicted the cracks patterns and failure mode of the strengthened RC beams. The FE model is then expanded to predict the effect of bond strength on the flexural capacity of RC beams strengthened with externally bonded CNTs modified CFRP composites using CZM bond model. The results reveal that the flexural capacity of the strengthened beams increases with increasing the bond strength value. However, only 23% and 22% of the CFRP stress and strain capacity; in the case of full bond; can be utilized before failure.
Keywords
finite element; bond model; RC beams; strengthening; CFRP; CNTs;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bagha, A.K. and Bahl, S. (2020), "Finite element analysis of VGCF/pp reinforced square representative volume element to predict its mechanical properties for different loadings", Mater. Today: Proceed.. https://doi.org/10.1016/j.matpr.2020.06.108.   DOI
2 Bahl, S. (2020), "Axisymmetric finite element analysis of single fiber push-out test for stainless steel wire reinforced aluminum matrix composites", Mater. Today: Proceed., 28, 1605-1611. https://doi.org/10.1016/j.matpr.2020.06.108.   DOI
3 Bahl, S. and Bagha, A.K. (2020), "Finite element modeling and simulation of the fiber-matrix interface in fiber reinforced metal matrix composites", Mater. Today: Proceed.. https://doi.org/10.1016/j.matpr.2020.06.108.   DOI
4 Feng, Q.P., Deng, Y.H., Xiao, H.M., Liu, Y., Qu, C.B., Zhao, Y. and Fu, S.Y. (2014), "Enhanced cryogenic interfacial normal bond property between carbon fibers and epoxy matrix by carbon nanotubes", Compos. Sci. Technol., 104, 59-65. https://doi.org/10.1016/j.compscitech.2014.09.006.   DOI
5 Ferrari, V.J., de Hanai, J.B. and de Souza, R.A. (2013), "Flexural strengthening of reinforcement concrete beams using high performance fiber reinforcement cement-based composite (HPFRCC) and carbon fiber reinforced polymers (CFRP)", Constr. Build. Mater., 48, 485-498. https://doi.org/10.1016/j.compscitech.2014.09.006.   DOI
6 Gamino, A.L., Bittencourt, T.N. and de Oliveira e Sousa, J.L.A. (2009), "Finite element computational modeling of externally bonded CFRP composites flexural behavior in RC beams", Comput. Concrete, 6(3), 187-202. https://doi.org/10.12989/cac.2009.6.3.187.   DOI
7 Haddad, R.H. (2016), "Hybrid repair configurations with CFRP composites for recovering structural performance of steel-corroded beams", Constr. Build. Mater., 124, 508-518. https://doi.org/10.1016/j.conbuildmat.2016.07.124.   DOI
8 Irshidat, M.R. and Al-Saleh, M.H. (2016), "Effect of using carbon nanotube modified epoxy on bond-slip behavior between concrete and FRP sheets", Constr. Build. Mater., 105, 511-518. https://doi.org/10.1016/j.conbuildmat.2015.12.183.   DOI
9 Hawileh, R.A., Musto, H.A., Abdalla, J.A. and Naser, M.Z. (2019), "Finite element modeling of reinforced concrete beams externally strengthened in flexure with side-bonded FRP laminates", Compos. Part B: Eng., 173, 106952. https://doi.org/10.1016/j.compositesb.2019.106952.   DOI
10 Hognestad, E., Hanson, N.W. and McHenry, D. (1955), "Concrete stress distribution in ultimate strength design", J. Proceed., 52(12), 455-480.
11 Irshidat, M.R. and Al-Saleh, M.H. (2017a), "Flexural strength recovery of heat-damaged RC beams using carbon nanotubes modified CFRP", Constr. Build. Mater., 145, 474-482. https://doi.org/10.1016/j.conbuildmat.2017.04.047.   DOI
12 Irshidat, M.R. and Al-Saleh, M.H. (2017b), "Repair of heat-damaged RC columns using carbon nanotubes modified CFRP", Mater. Struct., 50(2), 162. https://doi.org/10.1617/s11527-017-1034-6.   DOI
13 Irshidat, M.R., Al-Saleh, M.H. and Al-Shoubaki, M. (2015), "Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns", Compos. Struct., 134, 523-532. https://doi.org/10.1617/s11527-017-1034-6.   DOI
14 Korayem, A.H., Barati, M.R., Simon, G.P., Zhao, X.L. and Duan, W.H. (2014), "Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch", Compos. Part A: Appl. Sci. Manuf., 61, 126-133. https://doi.org/10.1016/j.compositesa.2014.02.016.   DOI
15 Irshidat, M.R., Al-Saleh, M.H. and Almashagbeh, H. (2016), "Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites", Mater. Des., 89, 225-234. https://doi.org/10.1617/s11527-017-1034-6.   DOI
16 Kabir, M.I., Subhani, M., Shrestha, R. and Samali, B. (2018), "Experimental and theoretical analysis of severely damaged concrete beams strengthened with CFRP", Constr. Build. Mater., 178, 161-174. https://doi.org/10.1016/j.conbuildmat.2018.05.038.   DOI
17 Kharitonov, A.P., Tkachev, A.G., Blohin, A.N., Dyachkova, T.P., Kobzev, D.E., Maksimkin, A.V., ... & Alekseiko, L.N. (2016), "Reinforcement of Bisphenol-F epoxy resin composites with fluorinated carbon nanotubes", Compos. Sci. Technol., 134, 161-167. https://doi.org/10.1016/j.compscitech.2016.08.017.   DOI
18 Kim, N., Shin, Y.S., Choi, E. and Kim, H.S. (2015), "Relationships between interfacial shear stresses and moment capacities of RC beams strengthened with various types of FRP sheets", Constr. Build. Mater., 93, 1170-1179. https://doi.org/10.1016/j.compscitech.2016.08.017.   DOI
19 Kim, S. and Aboutaha, R.S. (2004), "Finite element analysis of carbon fiber-reinforcedrnpolymer (CFRP) strengthened reinforced concrete beams", Comput. Concrete, 1(4), 401-416. http://dx.doi.org/10.12989/cac.2004.1.4.401.   DOI
20 Kumar Bagha, A. and Bahl, S. (2020), "Strain energy and finite element analysis to predict the mechanical properties of vapor grown carbon fiber reinforced polypropylene nanocomposites", Mater. Today: Proceed.. https://doi.org/10.1016/j.matpr.2020.09.034.   DOI
21 Kumar Saini, M., Kumar Bagha, A., Kumar, S. and Bahl, S. (2020), "Finite element analysis for predicting the vibration characteristics of natural fiber reinforced epoxy composites", Mater. Today: Proceed.. https://doi.org/10.1016/j.matpr.2020.08.717.   DOI
22 Li, M., Gu, Y., Liu, Y., Li, Y. and Zhang, Z. (2013), "Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers", Carbon, 52, 109-121. https://doi.org/10.1016/j.carbon.2012.09.011.   DOI
23 Numerical Prediction of Bond-Slip Behavior in Simple Pull-Out Concrete Specimens. (n.d.). https://www.iasj.net/iasj?func=article&aId=63890. Accessed 12 November 2019.
24 Liang, J.F., Yu, D. and Yu, B. (2016), "Flexural behavior of concrete beams reinforced with CFRP prestressed prisms", Comput. Concrete, 17(3), 295-304. https://doi.org/10.12989/cac.2016.17.3.295.   DOI
25 Lu, X.Z., Teng, J.G., Ye, L.P. and Jiang, J.J. (2005), "Bond-slip models for FRP sheets/plates bonded to concrete", Eng. Struct., 27(6), 920-937. https://doi.org/10.1016/j.engstruct.2005.01.014.   DOI
26 Naser, M.Z., Hawileh, R.A. and Abdalla, J.A. (2019), "Fiberreinforced polymer composites in strengthening reinforced concrete structures: A critical review", Eng. Struct., 198, 109542. https://doi.org/10.1016/j.engstruct.2019.109542.   DOI
27 Stoner, J.G. and Polak, M.A. (2020), "Finite element modelling of GFRP reinforced concrete beams", Comput. Concrete, 25(4), 369-382. https://doi.org/10.12989/cac.2020.25.4.369.   DOI
28 Obaidat, Y.T., Heyden, S. and Dahlblom, O. (2010), "The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM", Compos. Struct., 92(6), 1391-1398. https://doi.org/10.1016/j.compstruct.2009.11.008.   DOI
29 Rousakis, T.C., Kouravelou, K.B. and Karachalios, T.K. (2014), "Effects of carbon nanotube enrichment of epoxy resins on hybrid FRP-FR confinement of concrete", Compos. Part B: Eng., 57, 210-218. https://doi.org/10.1016/j.compositesb.2013.09.044.   DOI
30 Soliman, E., Kandil, U.F. and Reda Taha, M. (2012), "Limiting shear creep of epoxy adhesive at the FRP-concrete interface using multi-walled carbon nanotubes", Int. J. Adhes. Adhesiv., 33, 36-44. https://doi.org/10.1016/j.ijadhadh.2011.09.006.   DOI
31 Willam, K.J. (1975), "Constitutive model for the triaxial behaviour of concrete", Proc. Intl. Assoc. Bridge Structl. Engrs, 19, 1-30.
32 Xue, W., Tan, Y. and Zeng, L. (2010), "Flexural response predictions of reinforced concrete beams strengthened with prestressed CFRP plates", Compos. Struct., 92(3), 612-622. https://doi.org/10.1016/j.compstruct.2009.09.036.   DOI