• Title/Summary/Keyword: Word learning system

Search Result 204, Processing Time 0.024 seconds

Korean Semantic Role Labeling Using Semantic Frames and Synonym Clusters (의미 프레임과 유의어 클러스터를 이용한 한국어 의미역 인식)

  • Lim, Soojong;Lim, Joon-Ho;Lee, Chung-Hee;Kim, Hyun-Ki
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.773-780
    • /
    • 2016
  • Semantic information and features are very important for Semantic Role Labeling(SRL) though many SRL systems based on machine learning mainly adopt lexical and syntactic features. Previous SRL research based on semantic information is very few because using semantic information is very restricted. We proposed the SRL system which adopts semantic information, such as named entity, word sense disambiguation, filtering adjunct role based on sense, synonym cluster, frame extension based on synonym dictionary and joint rule of syntactic-semantic information, and modified verb-specific numbered roles, etc. According to our experimentations, the proposed present method outperforms those of lexical-syntactic based research works by about 3.77 (Korean Propbank) to 8.05 (Exobrain Corpus) F1-scores.

Analysis of Pressure Ulcer Nursing Records with Artificial Intelligence-based Natural Language Processing (인공지능 기반 자연어처리를 적용한 욕창간호기록 분석)

  • Kim, Myoung Soo;Ryu, Jung-Mi
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.365-372
    • /
    • 2021
  • The purpose of this study was to examine the statements characteristics of the pressure ulcer nursing record by natural langage processing and assess the prediction accuracy for each pressure ulcer stage. Nursing records related to pressure ulcer were analyzed using descriptive statistics, and word cloud generators (http://wordcloud.kr) were used to examine the characteristics of words in the pressure ulcer prevention nursing records. The accuracy ratio for the pressure ulcer stage was calculated using deep learning. As a result of the study, the second stage and the deep tissue injury suspected were 23.1% and 23.0%, respectively, and the most frequent key words were erythema, blisters, bark, area, and size. The stages with high prediction accuracy were in the order of stage 0, deep tissue injury suspected, and stage 2. These results suggest that it can be developed as a clinical decision support system available to practice for nurses at the pressure ulcer prevention care.

Single Document Extractive Summarization Based on Deep Neural Networks Using Linguistic Analysis Features (언어 분석 자질을 활용한 인공신경망 기반의 단일 문서 추출 요약)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.8
    • /
    • pp.343-348
    • /
    • 2019
  • In recent years, extractive summarization systems based on end-to-end deep learning models have become popular. These systems do not require human-crafted features and adopt data-driven approaches. However, previous related studies have shown that linguistic analysis features such as part-of-speeches, named entities and word's frequencies are useful for extracting important sentences from a document to generate a summary. In this paper, we propose an extractive summarization system based on deep neural networks using conventional linguistic analysis features. In order to prove the usefulness of the linguistic analysis features, we compare the models with and without those features. The experimental results show that the model with the linguistic analysis features improves the Rouge-2 F1 score by 0.5 points compared to the model without those features.

An Exploratory Study on the Effects of Mobile Proptech Application Quality Factors on the User Satisfaction, Intention of Continuous Use, and Words-of-Mouth (모바일 부동산중개 애플리케이션의 품질요인이 사용자 만족, 지속적 사용 및 구전의도에 미치는 영향)

  • Jaeyoung Kim;Horim Kim
    • Information Systems Review
    • /
    • v.22 no.3
    • /
    • pp.15-30
    • /
    • 2020
  • In the real estate industry, the latest changes in the Fourth Industrial Revolution, such as big data analytics, machine learning, and VR (virtual reality), combine to bring about industry change. Proptech is a new term combining properties and technology. This study aims to derive and analyze from a comprehensive perspective the quality factors (systems, services, interfaces, information) for mobile real estate brokerage services that are well known and used in the domestic market. The surveys in this study were conducted online and offline and a total of 161 samples were used for statistical analysis. As a result, all hypotheses were approved to except system quality and service quality. The results show that the domestic proptech companies who are mostly focused on real estate brokerage services, peer-to-peer lending, advertising platforms and apartments need to grow in various fields of proptech business of other countries including Europe, USA and China.

A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords (검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템)

  • Lee, Yunju;Won, Haram;Shim, Jaeseung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.151-166
    • /
    • 2020
  • A recommender system is a system that recommends products or services that best meet the preferences of each customer using statistical or machine learning techniques. Collaborative filtering (CF) is the most commonly used algorithm for implementing recommender systems. However, in most cases, it only uses purchase history or customer ratings, even though customers provide numerous other data that are available. E-commerce customers frequently use a search function to find the products in which they are interested among the vast array of products offered. Such search keyword data may be a very useful information source for modeling customer preferences. However, it is rarely used as a source of information for recommendation systems. In this paper, we propose a novel hybrid CF model based on the Doc2Vec algorithm using search keywords and purchase history data of online shopping mall customers. To validate the applicability of the proposed model, we empirically tested its performance using real-world online shopping mall data from Korea. As the number of recommended products increases, the recommendation performance of the proposed CF (or, hybrid CF based on the customer's search keywords) is improved. On the other hand, the performance of a conventional CF gradually decreased as the number of recommended products increased. As a result, we found that using search keyword data effectively represents customer preferences and might contribute to an improvement in conventional CF recommender systems.

Research on the Utilization of Recurrent Neural Networks for Automatic Generation of Korean Definitional Sentences of Technical Terms (기술 용어에 대한 한국어 정의 문장 자동 생성을 위한 순환 신경망 모델 활용 연구)

  • Choi, Garam;Kim, Han-Gook;Kim, Kwang-Hoon;Kim, You-eil;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.4
    • /
    • pp.99-120
    • /
    • 2017
  • In order to develop a semiautomatic support system that allows researchers concerned to efficiently analyze the technical trends for the ever-growing industry and market. This paper introduces a couple of Korean sentence generation models that can automatically generate definitional statements as well as descriptions of technical terms and concepts. The proposed models are based on a deep learning model called LSTM (Long Sort-Term Memory) capable of effectively labeling textual sequences by taking into account the contextual relations of each item in the sequences. Our models take technical terms as inputs and can generate a broad range of heterogeneous textual descriptions that explain the concept of the terms. In the experiments using large-scale training collections, we confirmed that more accurate and reasonable sentences can be generated by CHAR-CNN-LSTM model that is a word-based LSTM exploiting character embeddings based on convolutional neural networks (CNN). The results of this study can be a force for developing an extension model that can generate a set of sentences covering the same subjects, and furthermore, we can implement an artificial intelligence model that automatically creates technical literature.

A Comparative Study of Elementary School Mathematics Textbooks between Korea and Japan - Focused on the 4th Grade - (한국과 일본의 초등학교 수학교과서 비교 연구 - 4학년을 중심으로 -)

  • Lee, Jae-Chun;Kim, Seon-Yu;Kang, Hong-Jae
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • This research is to provide a useful reference for the future revision of textbook by comparative analysis with the textbook in the 4th grade of elementary school in Japan. The results from this research is same as follows: First, Korean curriculum is emphasizing the reasonable problem-solving ability developed on the base of the mathematical knowledge and skill. Meantime, Japanese puts much value on the is focusing on discretion and the capability in life so that they emphasize each person's learning and raising the power of self-learning and thinking. The ratio on mathematics in both company are high, but Japanese ensures much more hours than Korean. Second, the chapter of Korean textbook is composed of 8 units and the title of the chapter is shown as key word, then the next objects are describes as 'Shall we do$\sim$' type. Hence, the chapter composition of Japanese textbook is different among the chapter and the title of the chapter is described as 'Let's do$\sim$'. Moreover, Korean textbook is arranged focusing on present study, however Japanese is composed with each independent segments in the present study subject to the study contents. Third, Japanese makes students understand the decimal as the extension of the decimal system with measuring unit($\ell$, km, kg) then, learn the operation by algorithm. In Korea, students learn fraction earlier than decimal, but, in Japan students learn decimal earlier than fraction. For the diagram, in Korea, making angle with vertex and side comes after the concept of angle, vertex and side is explained. Hence, in Japan, they show side and vertex to present angle.

  • PDF

Study on Improving Maritime English Proficiency Through the Use of a Maritime English Platform (해사영어 플랫폼을 활용한 표준해사영어 실력 향상에 관한 연구)

  • Jin Ki Seor;Young-soo Park;Dongsu Shin;Dae Won Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.930-938
    • /
    • 2023
  • Maritime English is a specialized language system designed for ship operations, maritime safety, and external and internal communication onboard. According to the International Maritime Organization's (IMO) International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW), it is imperative that navigational officers engaged in international voyages have a thorough understanding of Maritime English including the use of Standard Marine Communication Phrases (SMCP). This study measured students' proficiency in Maritime English using a learning and testing platform that includes voice recognition, translation, and word entry tasks to evaluate the resulting improvement in Maritime English exam scores. Furthermore, the study aimed to investigate the level of platform use needed for cadets to qualify as junior navigators. The experiment began by examining the correlation between students' overall English skills and their proficiency in SMCP through an initial test, followed by the evaluation of improvements in their scores and changes in exam duration during the mid-term and final exams. The initial test revealed a significant dif erence in Maritime English test scores among groups based on individual factors, such as TOEIC scores and self-assessment of English ability, and both the mid-term and final tests confirmed substantial score improvements for the group using the platform. This study confirmed the efficacy of a learning platform that could be extensively applied in maritime education and potentially expanded beyond the scope of Maritime English education in the future.

Subject-Balanced Intelligent Text Summarization Scheme (주제 균형 지능형 텍스트 요약 기법)

  • Yun, Yeoil;Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.141-166
    • /
    • 2019
  • Recently, channels like social media and SNS create enormous amount of data. In all kinds of data, portions of unstructured data which represented as text data has increased geometrically. But there are some difficulties to check all text data, so it is important to access those data rapidly and grasp key points of text. Due to needs of efficient understanding, many studies about text summarization for handling and using tremendous amounts of text data have been proposed. Especially, a lot of summarization methods using machine learning and artificial intelligence algorithms have been proposed lately to generate summary objectively and effectively which called "automatic summarization". However almost text summarization methods proposed up to date construct summary focused on frequency of contents in original documents. Those summaries have a limitation for contain small-weight subjects that mentioned less in original text. If summaries include contents with only major subject, bias occurs and it causes loss of information so that it is hard to ascertain every subject documents have. To avoid those bias, it is possible to summarize in point of balance between topics document have so all subject in document can be ascertained, but still unbalance of distribution between those subjects remains. To retain balance of subjects in summary, it is necessary to consider proportion of every subject documents originally have and also allocate the portion of subjects equally so that even sentences of minor subjects can be included in summary sufficiently. In this study, we propose "subject-balanced" text summarization method that procure balance between all subjects and minimize omission of low-frequency subjects. For subject-balanced summary, we use two concept of summary evaluation metrics "completeness" and "succinctness". Completeness is the feature that summary should include contents of original documents fully and succinctness means summary has minimum duplication with contents in itself. Proposed method has 3-phases for summarization. First phase is constructing subject term dictionaries. Topic modeling is used for calculating topic-term weight which indicates degrees that each terms are related to each topic. From derived weight, it is possible to figure out highly related terms for every topic and subjects of documents can be found from various topic composed similar meaning terms. And then, few terms are selected which represent subject well. In this method, it is called "seed terms". However, those terms are too small to explain each subject enough, so sufficient similar terms with seed terms are needed for well-constructed subject dictionary. Word2Vec is used for word expansion, finds similar terms with seed terms. Word vectors are created after Word2Vec modeling, and from those vectors, similarity between all terms can be derived by using cosine-similarity. Higher cosine similarity between two terms calculated, higher relationship between two terms defined. So terms that have high similarity values with seed terms for each subjects are selected and filtering those expanded terms subject dictionary is finally constructed. Next phase is allocating subjects to every sentences which original documents have. To grasp contents of all sentences first, frequency analysis is conducted with specific terms that subject dictionaries compose. TF-IDF weight of each subjects are calculated after frequency analysis, and it is possible to figure out how much sentences are explaining about each subjects. However, TF-IDF weight has limitation that the weight can be increased infinitely, so by normalizing TF-IDF weights for every subject sentences have, all values are changed to 0 to 1 values. Then allocating subject for every sentences with maximum TF-IDF weight between all subjects, sentence group are constructed for each subjects finally. Last phase is summary generation parts. Sen2Vec is used to figure out similarity between subject-sentences, and similarity matrix can be formed. By repetitive sentences selecting, it is possible to generate summary that include contents of original documents fully and minimize duplication in summary itself. For evaluation of proposed method, 50,000 reviews of TripAdvisor are used for constructing subject dictionaries and 23,087 reviews are used for generating summary. Also comparison between proposed method summary and frequency-based summary is performed and as a result, it is verified that summary from proposed method can retain balance of all subject more which documents originally have.

Semiology as a Way of Expression for Message-focused on the advertising design- (메시지 표현방법으로서의 기호-광고 디자인을 중심으로-)

  • 박영희
    • Archives of design research
    • /
    • no.18
    • /
    • pp.113-121
    • /
    • 1996
  • Persuasion is one of the attractive channels to enhance the relation between markerters and consumers and deliver the true communication on products to the consumers. This arctic tried to examine the symbolic meaning system as a way of maximizing the visual communicational effect of persuasion, the efforts of marketers who are trying to utilize the psychology of the mass that consume the symbol rather than products and the symbol system as a mean of propaganda were analyzed as well. People in modern age, in general, place more value on the emotional assoessibility than the efficiency of the product, As a result, the ways of expression of propaganda approaching the mass are in the process of gradual change, which was another theme this article tried to explore. Ames sied that the human preoeption has a tendency to perceive things in some organized pattern, which can be applied to even untransparable and meaningless image. Human beings don't perceive what there is but what, thery believe there to be, and his peroeption are channelized by the opportunity of the past, his peroeption are channelized by the opportunity of the past, his experience of the environment, and the history of learning. To say another word, people not only recognize the objective form but also accept the inside meaning of the visual object. Their reponse to the visual object, therefore, include personal cognition, judgment, and attitued. The communication in visual design reveals the culture, society, and art in a complex symbol, and make synthetic cultural interpretation possible. It's pretty attractive, effective, and reasonable method to use symbolic meaning system as a way of persuasion. It is because communication means whole process from receiving and delivering the information and message to making common meaning system, to measuring the effect of the behavior change.

  • PDF