• Title/Summary/Keyword: Word cloud analysis

Search Result 153, Processing Time 0.036 seconds

Analysis of Research Trends in Home Economics Education by Language Network Analysis: Focused on the KCI Journals (2000-2019) (언어 네트워크 분석에 기반 한 가정과교육 연구 동향 분석: 2000-2019년 KCI 등재지를 중심으로)

  • Gham, Kyoung Won;Park, Mi Jeong
    • Journal of Korean Home Economics Education Association
    • /
    • v.32 no.3
    • /
    • pp.179-197
    • /
    • 2020
  • This study analyzed the trends in home economics education research using the language network analysis method, focusing on papers published in the KCI list for 20 years from 2000 to 2019. A total of 501 home economics education papers analyzed through word cloud, centrality analysis, and topic modeling using NetMiner 4.4, and the results are as follows. First, the number of papers in home economics education published in the KCI listing increased gradually to 186 in the 2000s and 315 in the 2010s. The academic journals in which home economics education papers were published have been diversified to 16 in the 2000s and 22 in the 2010s. 60% of all papers were published in the 'Journal of Korean Home Economics Education Association', and since 2018, the number of papers published in the 'Journal of Learner-Centered Curriculum and Instruction' has increased dramatically. Second, in the 2000s and 2010s, home economics education studies published in KCI were categorized into home economics education content analysis, home economics educational program development & application, curriculum analysis, perception survey & direction exploration. In the 2000s, 'Home Economics Teacher' appeared as the main keyword, and a lot of perception survey & direction exploration were conducted. Relatively, the influence of 'development' increased in the 2010s, and many studies were conducted to analyze home economics education contents and develop and apply home economics programs. This study has significance in that it analyzed the research trend of HEE by expanding the analysis target and analysis period of the existing studies.

SNS Message as an Political PR Campaign Strategy: Focusing on the 21st General Election (정치 PR 전략으로서의 SNS 메시지 : 21대 총선을 중심으로)

  • Cha, Young-Ran
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.9
    • /
    • pp.208-223
    • /
    • 2020
  • In the 21st general election held in April 15, 2020, the importance of social media as an election campaigning tool became more prominent when engaged with Corona 19. Therefore, in this study, various studies were conducted to establish SNS strategy as an election campaign tool. This study analyzed the contents of SNS (Facebook, Twitter, YouTube) activities as an election campaign tool to analyze messages on social media messages of candidates Lee Nak-yeon and candidate Hwang Kyo-an of Jongno-gu, Seoul during the 2020 21st National Assembly election. Data collection mainly analyzed posts from each candidate's official account, and the research method used text analysis using the R program. Word cloud, comparative analysis, q-graph analysis, LDA, and STM analysis were used during text analysis. In addition, the analysis result was confirmed to be statistically significant through correlation analysis. As a result of research, candidate Lee Nak-yeon's election includes corona, people, problems, crisis, suffering, and wisdom, which indicates that the crisis caused by corona must be overcome through any means possible. On the other hand, candidate Hwang Kyo-an's election includes Moon Jae-in, the regime, save, the fatherland, the judge, and the economy. And from the perspective of political publicity, candidate Lee Nak-yeon made a lot of acclaims, while candidate Hwang Kyo-an made a lot of attacks, and both themes emphasized the policy rather than the image.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.

A Study on Consumer perception changes of online education before and after COVID-19 using text mining (텍스트 마이닝을 활용한 온라인 교육에 대한 소비자 인식 변화 분석: COVID-19 전후를 중심으로)

  • Sohn, Minsung;Im, Meeja;Park, Kyunghwan
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.29-43
    • /
    • 2021
  • Coinciding with the advent of COVID-19, online education is on the rise both domestically and globally, and has become an absolutely necessary and irreplaceable form of education. It is a very curious question what the perception of people about the suddenly growing form of education is, and how it has changed. This study investigated changes in consumers' perception of online education using big data. To this end, we divided the time into four stages: before COVID-19 (November to December 2019), after the triggering of COVID-19 (January to February 2020), right after the online classes started (March to April 2020), after experiencing some online education (May to June 2020). Then we conducted text mining, namely, keyword frequency analysis, network analysis, word cloud analysis, and sentiment analysis were performed. The implications derived as a result of the analysis can help education policy makers and educators working in the field to improve online education quality and establish its future directions.

Text Mining Analysis of Media Coverage of Maritime Sports: Perceptions of Yachting, Rowing, and Canoeing (텍스트마이닝을 활용한 해양스포츠에 대한 언론 보도기사 분석: 요트, 조정, 카누를 중심으로)

  • Ji-Hyeon Kim;Bo-Kyeong Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.609-619
    • /
    • 2023
  • This study aimed to investigate the formation of the social perception of domestic maritime sports using text mining analysis of keywords and topics from domestic media coverage over the past 10 years related to representative maritime sports, including yachting, rowing, and canoeing. The results are as follows: First, term frequency (TF) and word cloud analyses identified the top keywords: "maritime," "competition," "experience," "tourism," "world," "yachting," "canoeing," "leisure," and "participation." Second, semantic network analysis revealed that yachting was correlated with terms like "maritime," "industry," "competition," "leisure," "tourism," "boat," "facilities," and "business"; rowing with terms like "competition" and "Chungju"; and canoeing with terms like "maritime," "competition," "experience," "leisure," and "tourism." Third, topic modeling analysis indicated that yachting, rowing, and canoeing are perceived as elite sports and maritime leisure sports. However, the perception of these sports has been demonstrated to have little impact on society, public opinion, and social transformation. In summary, when considering these results comprehensively, it can be concluded that yachting and canoeing have gradually shifted from being perceived as elite sports to essential elements of the maritime leisure industry. Contrariwise, rowing remains primarily associated with elite sports, and its popularization as a maritime leisure sport appears limited at this time.

An Analysis of the Support Policy for Small Businesses in the Post-Covid-19 Era Using the LDA Topic Model (LDA 토픽 모델을 활용한 포스트 Covid-19 시대의 소상공인 지원정책 분석)

  • Kyung-Do Suh;Jung-il Choi;Pan-Am Choi;Jaerim Jung
    • Journal of Industrial Convergence
    • /
    • v.22 no.6
    • /
    • pp.51-59
    • /
    • 2024
  • The purpose of the paper is to suggest government policies that are practically helpful to small business owners in pandemic situations such as COVID-19. To this end, keyword frequency analysis and word cloud analysis of text mining analysis were performed by crawling news articles centered on the keywords "COVID-19 Support for Small Businesses", "The Impact of Small Businesses by Response System to COVID-19 Infectious Diseases", and "COVID-19 Small Business Economic Policy", and major issues were identified through LDA topic modeling analysis. As a result of conducting LDA topic modeling, the support policy for small business owners formed a topic label with government cash and financial support, and the impact of small business owners according to the COVID-19 infectious disease response system formed a topic label with a government-led quarantine system and an individual-led quarantine system, and the COVID-19 economic policy formed a topic label with a policy for small business owners to acquire economic crisis and self-sustainability. Focusing on the organized topic label, it was intended to provide basic data for small business owners to understand the damage reduction policy for small business owners and the policy for enhancing market competitiveness in the future pandemic situation.

A Study on Determining the Priority of Introducing Smart Ports in Korea (국내 스마트 항만 도입 우선순위 도출 연구)

  • Ryu, Won-Hyeong;Nam, Hyung-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.1
    • /
    • pp.31-59
    • /
    • 2024
  • In June 2016, the term "Fourth Industrial Revolution" was first used at the World Economic Forum in Davos, Switzerland, and it gained worldwide attention. Consequently, the importance of smart ports has increased as the shipping industry has been incorporating various Fourth Industrial Revolution technologies. Currently, major countries around the world are working to achieve digital transformation in the maritime and port industry by establishing comprehensive smart ports. However, the smartification of domestic ports in South Korea is currently limited to a few areas such as Busan, Incheon, and Gwangyang, focusing on port automation. In this context, this study performed keyword analysis to identify key components of smart ports and conducted Analytic Hierarchy Process (AHP) analysis among relevant stakeholders to determine the priorities for the Introduction of smart ports in South Korea. The analysis revealed that universities prioritized automation, intelligenceization, informatization and environmentalization in that order. Research institutes prioritized informatization, intelligenceization, automation and environmentalization. Government agencies prioritized informatization, automation, intelligenceization and environmentalization, while private sector enterprises prioritized automation, intelligenceization, informatization, and environmentalization.

Social Welfare Education in the 4th Industrial Revolution (4차 산업혁명시대의 사회복지교육)

  • Nam, Hee-Eun;Baik, Jeong-Won;Im, Yu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.46-53
    • /
    • 2020
  • The purpose of this study was to examine the direction of social welfare education in the 4th Industrial Revolution as well as discuss the overall direction of social welfare education such as competency and curriculum and the educational dimension of social welfare professionals. Using Text Network Analysis, 223 studies published from 2005 to 2019 in the Korean Journal of Social Welfare Education were examined in order to explore the direction of social welfare education in the 4th Industrial Revolution. Using Word cloud, overall frequency was analyzed. As a result of key words analysis, social welfare education (43), research method (28), and social welfare field practice (23) were analyzed as influential key words. The directions of social welfare education in the 4th Industrial Revolution era are as follows. First, competency, curriculum, and qualifications are necessary in general social welfare education. Second, education centering on social workers and social welfare students, who are social welfare professionals, is necessary. Third, the ethical sensitivity of future social welfare should be carefully established. Finally, the need for a shared welfare system must be further studied.

Analysis on Trends and Contents of Research Related to Young Children's Safety (영유아 안전 관련 학술연구의 동향 및 내용 분석: 2010년~2017년)

  • Sung, Mi-Young;Jung, Hyun-Sim;Lee, Seo-Kyeong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.504-517
    • /
    • 2018
  • The purpose of this study is to analyze the trends and contents of the research related to young children safety published in the domestic KCI and the candidate journals from 2010 to 2017. To analyze this, we selected 75 articles related to safety for young children published in the KCI and candidate journals from 2010 to 2017. A total of 75 papers were analyzed for frequency, percentage and ${\chi}^2$ using the SPSS Win 23.0 program. The main results of this study are as follows: First, the articles related to young children safety were published the most in 2016 and 2017 and related to infant safety were the least. Next, more than half of the research methods were conducted by quantitative research methods. The results of this study are meaningful in that it presents the necessity of safety education by analyzing trends and contents of research related to young children safety in situations where safety accidents for young children are frequent and the importance of young children safety is more emphasized. It is expected that this research will provide basic data on research topics such as disaster safety who need further research.

Analysis on Trend of Study Related to Computational Thinking Using Topic Modeling (토픽 모델링을 이용한 컴퓨팅 사고력 관련 연구 동향 분석)

  • Moon, Seong-Yun;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.607-619
    • /
    • 2019
  • As software education was introduced through the 2015 revised curriculum, various research activities have been carried out to improve the computational thinking of learners beyond the existing ICT literacy and software utilization education. With this change, the purpose of this study is to examine the research trends of various research activities related to computational thinking which is emphasized in software education. To this end, we extracted the key words from 190 papers related to computational thinking subject published from January 2014 to September 2019, and conducted frequency analysis, word cloud, connection centrality, and topic modeling analysis on the words. As a result of the topical modeling analysis, we found that the main studies so far have included studies on 'computational thinking education program', 'computational thinking education for pre-service teacher education', 'robot utilization education for computational thinking', 'assessment of computational thinking', and 'computational thinking connected education'. Through this research method, it was possible to grasp the research trend related to computational thinking that has been conducted mainly up to now, and it is possible to know which part of computational thinking education is more important to researchers.