• Title/Summary/Keyword: Wood waste

Search Result 319, Processing Time 0.029 seconds

Manufacture and Performance Evaluation of Medium-density Fiberboard Made with Coffee Bean Residue-Wood Fiber (커피박과 목섬유를 이용한 중밀도섬유판의 제조 및 성능 평가)

  • Yang, In;Lee, Kwang-Hyung;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • This study discusses the feasibility of coffee bean residue as a raw material of medium-density fiberboard (MDF). In this relation, the effect of coffee bean residue known as an absorbent material on the physical and mechanical properties of MDF manufactured at its different addition level. Coffee bean residue which is a by-product of coffee mill and large amount of waste left over after processing for instant coffee was added at the level of 3, 6, and 9% on dry basis and urea formaldehyde resin was used as the adhesive. The MDF made with mixture of wood fiber and coffee bean residue was tested for physical and mechanical properties as well as formaldehyde emission. The bending strength and internal bonding strength of the MDF made with mixture of wood fiber-coffee bean residue were higher than that of the KS standard in randomized mat structure type, but not in layered mat structure type. Also, the physical properties of MDF made with mixture of wood fiber-coffee bean residue showed a considerable improvement in thickness swelling over the commercial MDF. More importantly, the formaldehyde emission rate of MDF made with mixture of wood fiber-coffee bean residue met the KS standard and was close to that of commercial MDF. These results showed the feasibility of coffee bean residue as a raw material for the production of environmentally-friendly MDF. Additional works on adhesive-coffee bean compatibility, improvement of moisture absorption effect and reduction the formaldehyde emission rate by carbonization of coffee bean residue may be required.

Development of Carbonization Technology and Application of Unutilized Wood Wastes(I) -Carbonization and It's Properties of Thinned Trees- (미이용 목질폐잔재의 탄화 이용개발(I) -수종의 간벌재 탄화와 탄화물의 특성-)

  • Kim, Byung-Ro;Kong, Seog-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • Objective of this research is to obtain fundamental data of carbonized wood wastes for soil condition, de-ordorization, absorption of water, carrier for microbial activity, and purifying agent for water quality of river. The carbonization technique and the properties of carbonized wood wastes(thinned trees) are analyzed. Proximate analysis shows the thinned wood contains 0.22-0.73% ash, 77-80% volatile matter, and 10-14% fixed carbon. The charcoal yield decreases and the shrinkage rate increases as the carbonization temperature and time increase. The charcoal yields of Larix leptolepis, Pinus rigida and Pinus densiflora are high, whereas those of Pinus koraiensis and Quercus variabilis are low. The shrinkage rate by carbonization has same trend as water removal of wood. The specific gravity after the carbonization decreases about 50% comparing to green wood. The charcoal has 0.89-4.08% ash, 6.31-13.79% volatile matter, and 73.9-83.5% fixed carbon. As the carbonization temperature and time increase, pH of charcoal increases. When the carbonization temperature is $400^{\circ}C$, pH is about 7.5. When the temperature is between 600 to $800^{\circ}C$, pH is about 10 with small difference. The water-retention capacity is not affected by the carbonization temperature and time. The water-retention capacity within 24hr is about 2.5 - 3times of sample weight, and the equivalent moisture content becomes 2-10% after 24 hr.

  • PDF

Hydrocarbon Synthesis of Waste Lignocellulosics by Liquefaction Reaction of Thermochemical Deoxyhydrogenolysis Method(I) (목질폐재(木質廢材)의 열(熱)-화학적(化學的) 탈(脫)산소-수소첨가반응(환원반응)에 의한 액화(液化)탄화수소의 합성(I))

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.79-85
    • /
    • 1990
  • Many kinds of acetosolv lignin including ricestraw and spruce lignin were pyrolyzed. and liquefied in the autoclave reactor using 50% tetralin and m-cresol solution respectively as soluble solvent and Co-Mo as catalyst. In order to promote deoxyhydrogenolysis reaction $H_2$ gas was supplied into the reactor. The ratio between lignin and the soluble solvent are lg and 10cc. The reaction conditions are $200^{\circ}-700^{\circ}C$ of reaction temperature, 10-50 atms of reaction pressure and 100-500rpm of the reactor stirrer. By the deoxyhydrogenolysis liquefaction reaction, the main chemical structures of lignin which are aryl-alkyl-${\beta}$-0-4 ether, phenylcoumaran and biphenyl etc. are easily destroyed into liqufied aromatic compounds and aliphatic compunds linked with aromatic compounds. The percent yield of monomeric phenols on the weight bvase of lignin reacted reached to 12-14% by the chemical analytic GC-MS etc.

  • PDF

Improvement of Physical Characteristics of Paper with Micro Pulp (마이크로 펄프를 이용한 종이의 물성 개선)

  • Kim, Hak-Sang;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • Beating and using chemical agents are common methods to improve physical properties. But the beating is high energy consumption process and chemical agent addition may cause deteriorate waste water quality. Therefore, it is necessary to use more environment-friendly methods. In this study, micro pulp was used in the handsheet making to get improving effects of physical properties without beating treatment and chemicals. Stiffness, thickness and air permeability were increased and strength properties of paper were also improved to some extents by only the micro pulp addition.

Fabrication of Movable Separator for Site to Discharge Medium and Large-Scale Mixed Construction Waste from Agricultural Areas and Its Efficiency Evaluation (농촌지역 혼합건설폐기물의 중·소규모 배출현장용 이동식 분리선별기 제작 및 선별 효율 성능평가)

  • Kim, Byung-Yun;Park, Ji-Sun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In this study, a real-sized experimental equipment (pilot plant) was built at the site based on the preliminary research data to develop a movable separator for the mixed construction waste that can be implemented in agricultural areas to review its feasibility through the evaluation of its separation efficiency by waste types. The final construction of the movable separator and experimental results of the separation efficiency are summarized as follows. 1) The separation performance according to the blade type was the best for the combustible wastes either with 26 numbers of L-type blades and 32 numbers of pin type blades. As far as combination of blade types, when the L-type and pin-type were combined, the best separation efficiency was achieved. 2) The separation efficiency for waste wood by the conveyor type and angle of inclination (slope) of the trommel was the best when the conveyor had ribs of seagull shape with the angle of inclination 45°. 3) The separation efficiencies by process showed that 65.9% was separated as inorganic demolition wastes, 18.2% as waste woods, and 16.0% as combustible wastes at conveyor speed of 2-3 rpm, and the error rate was the least from the waste types generated in the dismantle site.

Development of Heat Exchanger for Fermentation Heat Utilization from Waste Woody Biomass (목질계 폐바이오메스의 발효열이용 열교환기의 개발)

  • Cho, Nam-Seok;Choi, Tae-Ho;Kim, Hong-Eun;Lee, Suk-Ho;Lee, Chung-Koo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.94-104
    • /
    • 2009
  • It is urgently required to develop the production of fermentation-heat energy from the waste agricultural and forest biomass and its effective heat exchanging system for the supply of warm water to rural households and greenhouses. In this study 3 helical-type and 1 plate-type heat exchangers using 3 different waste biomasses [e.g. hardwood (HW) sawdust (100%), softwood (SW) sawdust : HW sawdust (50 : 50) and HW sawdust : grass (90 : 10)] were applied in order to find out the best heat recovery system. The heat exchanger was basically considered to improve the overall heat recovery efficiency, to minimize heat loss and to simplify manufacturing, assembling and breaking up the fermenting beds. The helical-type heat exchanger (HX-H3) installed in fermenting bed of HW sawdust : grass (90 : 10) showed relatively higher temperature profiles, in particular mid- and upper-parts than lower and surface parts during 45-day fermentation process. The maximum temperature was ranged from $40^{\circ}C$ to $65^{\circ}C$ with average $60^{\circ}C$. The water temperature of tank outlet was ranged to $33{\sim}48^{\circ}C$ during whole measuring periods. By the way plate-type one (HX-P) installed in same biomass compositional fermenting bed showed $64.5{\sim}76.5^{\circ}C$ at center part, and $43{\sim}56^{\circ}C$ and $42{\sim}58^{\circ}C$, water tank and tank outlet temperatures, respectively, during 100 day measurement. It could be concluded that the plate-type heat exchanger (HX-P) provides not only the effective heating for the rural households and greenhouses, but also having the best heat recovery performance, easy manufacturing, assembling and breaking up the systems.

Comparison of the Construction Waste Generated by the Project and the Estimation of the Waste Generation Unit (건설공사 공정별 건설폐기물 발생량 비교 및 폐기물 발생 원단위 산정에 관한 연구)

  • Song, Tae-Hyeob;Seong, Jin-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.427-434
    • /
    • 2017
  • The generation of construction waste can be divided into a decommissioning phase and a new construction phase, and most of the waste is generated at the decommissioning stage. However, recently, domestic new construction construction has expanded to 150 trillion yards per year, so construction work is increasing rapidly. Especially, as the size of the construction work with much waste of construction waste exceeds 100 trillion, the management of the amount of construction waste in the new construction site is required. Unlike the dismantling work site, the new construction site can separate waste generated by each property, and relatively low foreign matter content is generated. The purpose of this study was to investigate the amount of construction waste generated by new construction sites and to calculate the unit amount of construction waste based on this. In addition, since the existing unit cost is centered on concrete and mixed waste, we set the basic unit by setting synthetic resin, waste wood, and waste board as additional items. The basic unit survey was carried out to investigate the wastes according to the characteristics of each construction period. As a result of the survey, the new construction site showed that most wastes were discharged in the first 30% and after 70% of the process, and the ratio of mixed construction waste was as high as 45%. As a result of this study, it was found that about twice as much waste was produced as compared with the conventional standard product.

Preparation of Insoluble Dietary Fiber from Forest Waste and Its Physiological Function in Rat Fed High Cholesterol Diets

  • Chai, Young-Mi;Lim, Bu-Kug;Lee, Jong-Yoon;Rhee, Soon-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.78-87
    • /
    • 2002
  • This study investigated the production of insoluble dietary fiber using forest waste and the dietary effect of manufactured insoluble fiber on physiological function in rat fed high cholesterol duets. Insoluble dietary fiber was prepared from the wood chips of oak (Quercus mongolica). The best condition for steam-explosion treatment for the preparation of insonuble dietary fiber was 25 kg/cm$^3$pressure for 6 minutes. In the chemical analysis of insoluble dietary fiber pretreated by 1% sodium hydroxide solution with steam-exploded wood, $\alpha$-cellulose content was 61.7% in the insoluble dietary fiber which contained 7.6% residual lignin. In order to compare insoluble dietary fiber with commercial $\alpha$-cellulose of physiological function, Sprague-Dawley male rats weighing 100$\pm$10 g were randomly assigned to one normal diet and five high cholesterol diet containing 1% cholesterol. The high cholesterol diet groups were classified as fiber free diet (FF group), 5% commercial $\alpha$-cellulose diet (5C group), 10% commercial $\alpha$-cellulose (l0C group), 5% insoluble dietary fiber dict (5M group), and 10% insoluble dietary fiber (10M group). The rats were fed ad libidum for 4 weeks. Food intake, weights gain, and food efficiency ratio in high cholesterol groups were higher than those of normal group, but there were no significant differences between the experimental groups. There were not any significant differences in the weights of livers, kidneys and small intestine of insoluble dietary fiber supplemented groups, but weight of cecum in all insolube dietary fiber group were significantly higher than those of FF group. A gstrointestinal transit time was decreased by supplementation of insoluble dietary fiber. Weight and water contents of feces in the insoluble dietary fiber supplemented groups were significantly higher than those of the FF group. There were not any significant differences in the activities of the glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) between the experimental groups. In conclusion, the manufactured insoluble dietary fiber and commercial insoluble fiber have the same physiological effects. The preparation method of the insoluble dietary fiber from the oak chips suited its purpose.

The Study of Physico-chemcal Characteristics of Municipal Solid Waste (MSW) in Gangwon Area (강원지역 도시폐기물의 물리·화학적 특성 연구)

  • Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.101-111
    • /
    • 2009
  • In this study, the physico-chemical characteristics of municipal solid waste (MWS) which was treated in gangwon area were investigated. It is necessary to measure the characteristics of municipal solid waste for build a waste treatment and RDF facility and for data-base and total managing of the landfill. It was found that the average density of solid wastes is in the range of $101.8{\sim}199.8kg/m^3$. This MSW was composed of 30.7% of food wastes, 36.3% of papers, 15.8% of plastics & vinyls, 1.9% of textiles, 3.2% of wood and 1.5% of rubber & leathers respectively. Most of MSW are composed of food, paper and plastic waste and the combustible waste is more than 90%. For three components, moisture is 44.6%, combustible component is 47.7% and ash is 7.7% respectively. The chemical elements are carbon, oxygen, and hydrogen on the dry basis of wastes. The low heating value of the MSW measured by calorimeter was obtained as 2,631 kcal/kg, and the high heating value of the MSW was obtained as 3,310 kcal/kg.

  • PDF

Characterization of Xylanase from Lentinus edodes M290 Cultured on Waste Mushroom Logs

  • Lee, Jae-Won;Gwak, Ki-Seob;Kim, Su-Il;Kim, Mi-Hyang;Choi, Don-Ha;Choi, In-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1811-1817
    • /
    • 2007
  • Extracellular enzymes from Lentinus edodes M290 on normal woods (Quercus mongolica) and waste logs from oak mushroom production were comparatively investigated. Endoglucanase, cellobiohydrolase, ${\beta}$-glucosidase, and xylanase activities were higher on waste mushroom logs than on normal woods after 1. edodes M290 inoculation. Xylanase activity was especially different, with a three times higher activity on waste mushroom logs. When the waste mushroom logs were used as a carbon source, a new 35 kDa protein appeared. After the purification, the optimal pH and temperature for xylanase activity were determined to be 4.0 and $50^{\circ}C$, respectively. More than 50% of the optimal xylanase activity was retained when the temperature was increased from 20 to $60^{\circ}C$, after a 240 min reaction. At $40^{\circ}C$, the xylanase maintained 93% of the optimal activity, after a 240 min reaction. The purified xylanase showed a very high homology to the xylanase family 10 from Aspergillus terreus by LC/MS-MS analysis. The highest Xcorr (1.737) was obtained from the peptide KWI SQGIPIDGIG SQTHLGSGGS WTVK originated from Aspergillus terreus, indicating that the 35 kDa protein was xylanase. This protein showed low homology to a previously reported L. edodes xylanase sequence.