• Title/Summary/Keyword: Wood adhesives

Search Result 134, Processing Time 0.022 seconds

Performance of Hybrid Adhesives of Blocked-pMDI/Melamine-Urea-Formaldehyde Resins for the Surface Lamination on Plywood

  • Lubis, Muhammad Adly Rahandi;Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.200-209
    • /
    • 2019
  • To improve the water resistance of melamine-urea-formaldehyde (MUF) resins, different levels of blocked polymeric 4,4 diphenyl methane diisocyanate (B-pMDI) were blended with MUF resins to prepare B-pMDI/MUF hybrid adhesives, and their adhesion performances were evaluated for the surface lamination of fancy veneer on plywood. FT-IR spectra showed that the de-blocked -NCO groups reacted with the -OH of hydroxymethyl groups of the MUF resins to form urethane bonds at 2% B-pMDI/MUF, which was detected before and after their hydrolysis. The mass loss after the hydrolysis consistently decreased as the B-pMDI level increased, indicating an improvement in the water resistance. As the B-pMDI level increased, the activation energy of hybrid adhesives decreased, which improved the reactivity of the hybrid adhesives. Additionally, the water resistance improvement of the hybrid adhesives increased the tensile shear strength of the surface laminated plywood in semi-water proof and water-proof by 23 % and 8 %, respectively, at 2% B-pMDI level. This was likely due to the urethane linkages in the hybrid adhesives. However, the formaldehyde emission from plywood panels bonded with the hybrid adhesives increased in the dry state, indicating incomplete curing of the hybrid adhesives.

Effects of Formaldehyde to Urea Mole Ratio on Thermomechanical Curing of Urea-Formaldehyde Resin Adhesives

  • Park, Byung-Dae;Kim, Jae-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • This study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermomechanical curing of UF resin adhesives with different F/U mole ratios. Thermomechanical curing of these UF resin adhesives was characterized using parameters of dynamic mechanical analysis (DMA) such as the gel temperature, maximum storage modulus, and peak temperatures of storage and loss modulus. As the F/U mole ratio decreased, the gel temperature of UF resin adhesives increased. The maximum storage modulus as an indicator of the rigidity of UF resin adhesives decreased with decreasing F/U mole ratio. The peak temperature of tan $\delta$ increased with decreasing F/U mole ratio, indicating that the vitrification occurred faster for high F/U mole ratio of UF resin adhesives than for the one of lower F/U mole ratio. These results partially explained the reason why UF resin adhesives with lower F/U mole ratio resulted in relatively poor adhesion performance when they were applied.

Flexural Modulus of Larch Boards Laminated by Adhesives with Reinforcing Material

  • Injeong LEE;Weontae OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • Economical use of larix (larch) boards (grade 3) in industries is lower than that of imported hardwood; thus, studies have been conducted toward performance improvement of larix boards. Herein, flexural modulus of larix board samples laminated with wood adhesives polyurethane resins, poly (vinyl acetate) resins, phenol-resorcinol-formaldehyde resins, melamine-formaldehyde resins, and urea-formaldehyde resins was compared with that of the samples bonded with adhesives reinforced with mesh-type basalt fibers. Moreover, the flexural moduli of the laminated samples bonded by mesh-type basalt fibers were compared with those of reinforced samples. The results showed that boards laminated with polyurethane and urea-formaldehyde resin adhesives had higher flexural modulus than those without the lamination. In particular, the increase in the flexural modulus was relatively significant for the 2- and 3-ply board structures laminated with polyurethane adhesives compared to those with reinforcement. The 3-ply board structure without reinforcement had the highest flexural modulus when the urea-formaldehyde resin adhesive was used.

Preliminary Study of Rapeseed Flour-based Wood Adhesives for Making Wood Flooring

  • Yang, In;Ahn, Sye-Hee;Choi, In-Gyu;Han, Gyu-Seong;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.451-458
    • /
    • 2011
  • Adhesives derived from renewable resources allow wood panel producers to make lower cost alternatives to formaldehyde-based adhesive resins. Among them, adhesive components extracted from industrial by-products or wastes are the most important research fields in the efficient utilization of waste and cost reduction. In our study, the rapeseed flour, which is a by product from the production of biodiesel extracted from rapeseed, was introduced to develop alternative adhesives for the production of wood flooring. The rapeseed flour was hydrolyzed with 1% sodium hydroxide solution and PF prepolymers were prepared with 3-molar ratios, 1.8, 2.1 and 2.4. The linear fracture mechanics was introduced to evaluate the glue bond quality in wood flooring composed of fancy-veneered and plywood, and the formaldehyde emission and adhesive penetration were also investigated. The formaldehyde emissions of wood flooring met the requirement of the standard of $SE_0$ specified in the KS standard. The rapeseed flour adhesive penetrated sufficiently into the vessel elements and lumens in fancy veneer and plywood and gave strong bond quality to the wood flooring. The fracture mechanics was introduced to evaluate the adhesive joint between fancy veneer and plywood. The critical stress intensity factor ($K_{IC}$) of boliva overlayed wood flooring was increased with increasing molar ratio and this was the same tendency in oak overlayed wood flooring. From the results, the formulated adhesives were efficiently used to bond fancy veneer onto the plywood to make wood flooring and showed a potential to be used as a component of environmentally friendly adhesive resin systems for production of flooring.

Green Adhesives Using Tannin and Cashew Nut Shell Liquid for Environment-friendly Furniture Materials

  • Lee, Jeong-Hun;Jeon, Ji-Soo;Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.3
    • /
    • pp.219-229
    • /
    • 2011
  • Sick building syndrome symptoms that are experienced by building occupants may be caused by toxic substances such as formaldehyde and VOCs, which are known to be emitted from building materials and wood composite products such as wood-based panel, furniture, engineered flooring and construction adhesive. In Korea, the use of wood composite products for indoor environments has increased over the last decade. Recently, wood composite products have been installed in approximately 95% of newly constructed residential buildings. The use of these products has resulted in problems related to human health, and consequently a realization about the importance of indoor air quality. In addition, consumer demand is increasing for natural materials because conventional building materials and wood composite products are made by adding urea-formaldehyde resin or they contain formaldehyde-based resin. More recently, many efforts have been made to reduce formaldehyde emission from building materials that laid in the indoor environment. Especially, if conventional formaldehyde-based adhesives are replaced with green adhesives for residential spaces, it is possible to reduce most of the emission amounts of formaldehyde in indoor environments. In line with this expectation, many researches are being conducted using natural materials such as tannin and cashew nut shell liquid (CNSL). This study discussed the affects and possibilities of green adhesives to reduce formaldehyde emission in indoor environments.

  • PDF

Bonding Performance of Adhesives with Lamina in Structural Glulam Manufactured by High Frequency Heating System

  • Kim, Keon-Ho;Kim, Se-Jong;Yang, Sang-Yun;Yeo, Hwanmyeong;Eom, Chang-Deuk;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.682-690
    • /
    • 2015
  • The bonding performance of two types of wood adhesives, namely phenol-resorcinol-formaldehyde (PRF) resin and melamine-urea-formaldehyde (MUF) resin for glued laminated timber manufactured by high frequency (HF) heating was evaluated. The HF heating system consists of HF oscillator with dielectric heating system for curing adhesives, and hydraulic press system for clamping glued laminated timber. The designed frequency and output power of the HF system was as 5 MHz and 60 kW, respectively. To verify dielectric heating mechanism under HF oscillation, the heat loss factors of laminae and adhesives were measured. The results show that it is possible to selectively heat adhesives for their curing due to the remarkably higher loss factor of the adhesives than those of wood laminae. The temperature of adhesive in the bonding line reached up to the set temperature within a few seconds by high frequency oscillating, which advanced the curing of adhesive afterwards. The bonding performance, such as shear strength of bonding line, water soaking delamination, and boiling water soaking delamination of PRF resin met the requirement of Korean Standard (KS), however the MUF resin did not meet the KS requirement of boiling water soaking delamination. These results indicate that the HF heating system is successful to manufacture glued laminated timbers with PRF resins to meet the bonding requirements.

Synthesis and Bonding Properties of Phenol·Resorcinol·Formaldehyde Resin Adhesives (페놀·레조르시놀 수지의 합성과 접착성능)

  • Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 1993
  • The phenol resorcinol formaldehyde resin (PRF) adhesives which are curing at ambient temperature for structural purposes were synthesized. A PRF resin is produced according to the two-stage reaction system. In first stage, a low-condensed resol or methylolated phenol were prepared from phenol by reaction with a formaldehyde in alkaline condition. The molar ratio of phenol to formaldehyde was 1.0~1.4. And in second-stage, resorcinol was added to combine with the methylol group of a low-condensed resol(R/P molar ratio 0.3). The glue-joint strength, pot-life and workability of this synthetic PRF resin were superior to conventional ambient temperature setting adhesives such as oilic urethane or water based polymer-isocyanate resin for wood adhesives.

  • PDF

Investigating The Potential of Human Hair Produced from The Beauty Parlor and Barbershop as a Raw Material of Wood Adhesives (미·이용업 폐기물 인모의 목재접착제 원료화 가능성 탐색)

  • Yang, In;Ahn, Sye Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.599-612
    • /
    • 2017
  • Human hair (HH) is produced as a waste from beauty parlor and barbershop. HH-based adhesives were formulated with NaOH-hydrolyzed HH, $H_2SO_4$-hydrolyzed chicken blood (CB) and PF as a crosslinking agent. Physicochemical properties and retention rate against hot water of the adhesives were measured to investigate the potential of HH as a raw material of wood adhesives. HH was composed of keratin-type protein of 80% and over. Ash of less than 0.1% was contained in HH. Among the amino acids included in HH, glutamic acid showed the highest content, followed by cysteine, serine, arginine and threonine. Solid content of the adhesives ranged from 33.2% to 41.8% depending on hydrolysis conditions of HH and PF type. Viscosity at $25^{\circ}C$ ranged from 300 to $600mPa{\cdot}s$ resulting in a sprayable adhesive. Retention rate against hot water measured to evaluate the water resistance of adhesives was the highest in the cured resin formulated with 5% NaOH-hydrolyzed HH and 5% $H_2SO_4$-hydrolyzed CB. Meanwhile, the molar ratio of formaldehyde to phenol in PF did not have a significant impact on the retention rate of HH-based adhesives. When the retention rates of HH-based adhesives were compared to those of conventional wood adhesive resins used for the production of wood-based panels extensively, HH-based adhesives formulated with 30 wt% PF showed lower retention rate than commercial urea-formaldehyde resin. However, when PF content was increased to 35 wt%, the retention rate greatly increased and approached to that of commercial melamine-urea-formaldehyde resin. Except for the results mentioned above, the analysis of economic feasibility suggests that HH-based adhesives can be used for the production of wood-based panels if HH is hydrolyzed in proper conditions and then the HH-based adhesives are formulated by the HH hydrolyzates with 35 wt% PF.

A Study on the Toxicity Analysis of Combustion Gases of Architectural Surface Materials and Architectural Adhesives (건축용 외장재와 접착제 연소가스의 독성분석에 관한 연구)

  • Kim, Won-Jong;Park, Young-Ju;Lee, Hae-Pyeong;Lim, Suk-Hwan;Kim, Jung-In
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.48-52
    • /
    • 2013
  • This study was carried out, using toxicity test apparatus, to analyze toxic gases of heat insulation material and adhesives of composite panels used for the architectural surface material when a fire occurs. The findings of this study show that CO, $CO_2$, HCOH, $CH_2CHCN$ and $NO_x$ were detected from styrofoam, reinforced styrofoam, polyurethane foam and glass fiber, but in the case of the polyurethane foam, HCl and HCN were detected as well. All the architectural adhesives released CO, $CO_2$ and $NO_x$, but HCHO was only detected from the adhesives for styrofoam, wood, tile, windows and doors; $CH_2CHCN$ was only from those for wood and stone; $C_6H_5OH$ was only from those for wood. The toxicity index was also measured for architectural surface material and adhesives. Polyurethane foam showed the highest index, 11.7, and glass fiber was followed as 6.8. Reinforced styrofoam showed 5.7 and styrofoam revealed the least 4.9. In the case of architectural adhesives, the highest ranking was those for stone 7.4, windows and doors 6.1, wood 5.3, tile 3.8, and styrofoam 3.7 were followed, respectively.

Performance of Melamine-Urea-Formaldehyde Resin Adhesives at Various Melamine Contents for Bonding Glued Laminated Timber Under High Frequency Heating

  • Hong, Min-Kug;Park, Byung-Dae;Kim, Keon-Ho;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.409-418
    • /
    • 2017
  • This work attempted to manufacture glued-laminated timber (Glulam) bonded with melamine-urea-formaldehyde (MUF) resin adhesives at various melamine contents from 20% to 50% under high frequency (HF) heating for a very short time. Two preparation methods were employed to prepare MUF resin adhesives with different melamine contents: one-batch method of synthesizing MUF resins in a single batch, and two-batch method of mixing urea-formaldehyde (UF) resin with melamine-formaldehyde (MF) resin that had been synthesized separately. As the melamine content increased, the gelation time and peak temperature of MUF resins decreased. The adhesion performance of plywood showed that the one-batch MUF resin adhesive with 50% melamine content only satisfied the standard requirement of water resistance. Thus, the one-batch MUF resin adhesive with 50% melamine content was applied for bonding wood lamina from four softwood species such as Japanese larch, Korean red pine, Korean pine and Japanese cedar to manufacture Glulam under HF heating. All Glulam samples bonded with the one-batch MUF resin adhesives with 50% melamine content except those from Korean Red Pine satisfied the requirement in water soaking or boiling water delamination test as an exterior grade Glulam. The presence of rosin in Korean Red Pine was believed to be responsible for its poor adhesion. These results showed that the one-batch MUF resin adhesives with 50% melamine content provided acceptable water resistance with exterior grade Glulam manufactured under HF heating.