DOI QR코드

DOI QR Code

Performance of Hybrid Adhesives of Blocked-pMDI/Melamine-Urea-Formaldehyde Resins for the Surface Lamination on Plywood

  • Received : 2019.01.17
  • Accepted : 2019.03.04
  • Published : 2019.03.25

Abstract

To improve the water resistance of melamine-urea-formaldehyde (MUF) resins, different levels of blocked polymeric 4,4 diphenyl methane diisocyanate (B-pMDI) were blended with MUF resins to prepare B-pMDI/MUF hybrid adhesives, and their adhesion performances were evaluated for the surface lamination of fancy veneer on plywood. FT-IR spectra showed that the de-blocked -NCO groups reacted with the -OH of hydroxymethyl groups of the MUF resins to form urethane bonds at 2% B-pMDI/MUF, which was detected before and after their hydrolysis. The mass loss after the hydrolysis consistently decreased as the B-pMDI level increased, indicating an improvement in the water resistance. As the B-pMDI level increased, the activation energy of hybrid adhesives decreased, which improved the reactivity of the hybrid adhesives. Additionally, the water resistance improvement of the hybrid adhesives increased the tensile shear strength of the surface laminated plywood in semi-water proof and water-proof by 23 % and 8 %, respectively, at 2% B-pMDI level. This was likely due to the urethane linkages in the hybrid adhesives. However, the formaldehyde emission from plywood panels bonded with the hybrid adhesives increased in the dry state, indicating incomplete curing of the hybrid adhesives.

Keywords

HMJGBP_2019_v47n2_200_f0001.png 이미지

Fig. 1. ATR-FTIR spectra of B-pMDI (a), and cured B-pMDI/MUF adhesives with different contents of B-pMDI (b).

HMJGBP_2019_v47n2_200_f0002.png 이미지

Fig. 2. Typical ATR-FTIR spectra of B-pMDI/MUF resins at different levels of B-pMDI after hydrolysis (a), and their mass loss (b).

HMJGBP_2019_v47n2_200_f0003.png 이미지

Fig. 3. DSC thermograms of B-pMDI/MUF resins at different contents of B-pMDI and different heating rates: neat MUF resins (a), 1% B-pMDI/MUF adhesives (b), 2% B-pMDI/MUF adhesives (c), typical DSC thermograms of B-pMDI/MUF adhesives at 10°C/min (d).

HMJGBP_2019_v47n2_200_f0004.png 이미지

Fig. 4. Kissinger plot and Ea values of B-pMDI/MUF resins as a function of B-pMDI level.

HMJGBP_2019_v47n2_200_f0005.png 이미지

Fig. 5. TSS and formaldehyde emission (FE) of surface laminate plywood bonded with B-pMDI/MUF resins as a function level of B-pMDI: Dry TSS (a), semi water proof TSS (b), water proof TSS (c), and FE values (d).

Table 1. Basic properties of B-pMDI/MUF hybrid adhesives as a function of B-pMDI content

HMJGBP_2019_v47n2_200_t0001.png 이미지

References

  1. Cai, X., Riedl, B., Wan, H., Zhang, S.Y., Wang, X. 2010. A study on the curing and viscoelastic characteristics of melamine-urea-formaldehyde resin in the presence of aluminium silicate nanoclays. Composites Part A 41(5): 604-611. https://doi.org/10.1016/j.compositesa.2010.01.007
  2. Delebecq, E., Pascault, J.P., Boutevin, B., Ganachaud, F. 2012. On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chemical Reviews 113(1): 80-118. https://doi.org/10.1021/cr300195n
  3. Despres, A., Pizzi, A., Delmotte, L. 2006. $^{13}C$ NMR investigation of the reaction in water of UF resins with blocked emulsifiable isocyanates. Journal of Applied Polymer Science 99(2): 589-596. https://doi.org/10.1002/app.22498
  4. Dunky, M. 1998. Urea-formaldehyde (UF) adhesive resins for wood. International Journal of Adhesion and Adhesives 18(2): 95-107. https://doi.org/10.1016/S0143-7496(97)00054-7
  5. Dunky, M. 2004. Adhesives based on formaldehyde condensation resins. Macromolecular Symposia 217(1): 417-430. https://doi.org/10.1002/masy.200451338
  6. Frihart, C. R., 2005. Wood adhesion and adhesives: In Handbook of Wood Chemistry and Wood Composites, Ed. Roger M. Rowell. CRC Press, New York. 216-272.
  7. Gopal G., Nath, S.K., Sujatha, D. 2014. Blocking of PMDI Resin and Mixed Phenol Blocked PMDI/Phenol Cardanol Formaldehyde Hybrid Resin for Plywood. International Journal of Applied Science-Research and Review 1(3): 117-128.
  8. Hong, M.K., Park, B.D. 2017. Effect of Urea-Formaldehyde Resin Adhesive Viscosity on Plywood Adhesion, Journal of Korean Wood Science and Technology 45(2): 223-231 https://doi.org/10.5658/WOOD.2017.45.2.223
  9. Jeong, B., Park, B.D. 2016. Measurement of Molecular Weights of Melamine-Urea-Formaldehyde Resins and Their Influences to Properties of Medium Density Fiberboards, Journal of Korean Wood Science and Technology 44(6): 913-922. https://doi.org/10.5658/WOOD.2016.44.6.913
  10. Jiang, J., Lu, X. 2017. Improving characteristics of melamine-urea-formaldehyde resin by addition of blocked polyurethane prepolymer. European Journal of Wood and Wood Products 75(2): 185-191. https://doi.org/10.1007/s00107-016-1132-0
  11. Kamoun, C., Pizzi, A., Zanetti, M. 2003. Upgrading melamine-urea-formaldehyde polycondensation resins with buffering additives. I. The effect of hexamine sulfate and its limits. Journal of Applied Polymer Science 90(1): 203-214. https://doi.org/10.1002/app.12634
  12. Kandelbauer, A., Despres, A., Pizzi, A., Taudes, I. 2007. Testing by fourier transform infrared species variation during melamine-urea-formaldehyde resin preparation. Journal of Applied Polymer Science 106(4): 2192-2197. https://doi.org/10.1002/app.26757
  13. Kim, S., Kim, H.J. 2005. Comparison of formaldehyde emission from building finishing materials at various temperatures in under heating system; ONDOL. Indoor Air 15(5): 317-325. https://doi.org/10.1111/j.1600-0668.2005.00368.x
  14. Kim, S. 2009. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission. Bioresourse Technology 100(2): 744-748. https://doi.org/10.1016/j.biortech.2008.06.062
  15. Kissinger, H.E. 1957. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry 29(11): 1702-1706. https://doi.org/10.1021/ac60131a045
  16. KS. 2016. KS F3101: Plywood. Korean Standard Association, Seoul, Republic of Korea.
  17. Li, X., Luo, J., Li, J., Gao, Q. 2016. Effects of diatomite inorganic fillers on the properties of a melamine-urea-formaldehyde resin. Journal of Applied Polymer Science 133: 1-8.
  18. Lubis, M.A.R., Park, B.D., Lee, S.M. 2017. Modification of urea-formaldehyde resin adhesives with blocked isocyanates using sodium bisulfite. International Journal of Adhesion and Adhesives 73: 118-124. https://doi.org/10.1016/j.ijadhadh.2016.12.001
  19. Lubis, M.A.R., Park, B.D. 2018. Analysis of the hydrolysates from cured and uncured ureaformaldehyde (UF) resins with two F/U mole ratios. Holzforschung 72: 759-768. https://doi.org/10.1515/hf-2018-0010
  20. Maminski, M.L., Pawlicki, J., Zado, A., Parzuchowski, P. 2007. Glutaraldehyde-modified MUF adhesive system - Improved hot water resistance. Holz als Roh-und Werkstoff 65(3): 251-253. https://doi.org/10.1007/s00107-006-0149-1
  21. Mansouri, H. R., Pizzi, A., Leban, J.M. 2006. Improved water resistance of UF adhesives for plywood by small pMDI additions. Holz als Roh-und Werkstoff 64(3): 218-220. https://doi.org/10.1007/s00107-005-0046-z
  22. Merline, D.J., Vukusic, S., Abdala, A.A. 2013. Melamine formaldehyde: Curing studies and reaction mechanism. Polymer Journal 45(4): 413-419. https://doi.org/10.1038/pj.2012.162
  23. Park, B.D., Lee, S.M., Roh, J.K. 2009. Effects of formaldehyde/urea mole ratio and melamine content on the hydrolytic stability of cured urea-melamineformaldehyde resin. European Journal of Wood and Wood Products 67: 121-123. https://doi.org/10.1007/s00107-008-0277-x
  24. Park, B.D., Kang, E.C., Lee, S.M., Park, J.Y. 2016. Formaldehyde emission of wood-based composite panels with different surface lamination materials using desiccator method, Journal of Korean Wood Science and Technology 44(4): 600-606. https://doi.org/10.5658/WOOD.2016.44.4.600
  25. Park, J.Y. 1998, Manufacturing of high water-resistant particleboard by combining use of urea resin and EMDI resin Journal of Korean Wood Science and Technology 26(1): 97-105.
  26. Pizzi, A., 2003. Melamine-formaldehyde adhesives. Handbook of Adhesive Technology. Second edition. Marcel Dekker, New York, 653-679.
  27. Siimer, K., Christjanson, P., Kaljuvee, T., Pehk, T., Lasn, I., Saks, I. 2008. TG-DTA study of melamine-ureaformaldehyde resins. Journal of Thermal Analysis and Calorimetry 92(1): 19-27. https://doi.org/10.1007/s10973-007-8721-4
  28. Simon, C., George, B., Pizzi, A. 2002. UF/pMDI wood adhesives: Networks blend versus copolymerization. Holzforschung 56(3): 327-334. https://doi.org/10.1515/HF.2002.052
  29. Stockel, F., Konnerth, J., Kantner, W., Moser, J., Gindl, W. 2010. Tensile shear strength of UF-and MUFbonded veneer related to data of adhesives and cell walls measured by nanoindentation. Holzforschung 64(3): 337-342. https://doi.org/10.1515/HF.2010.046
  30. Tohmura, S. I., Inoue, A., Sahari, S. H. 2001. Influence of the melamine content in melamine-ureaformaldehyde resins on formaldehyde emission and cured resin structure. Journal of Wood Science 47(6): 451-457. https://doi.org/10.1007/BF00767897
  31. Wicks, D. A., Wicks Jr, Z. W. 1999. Blocked isocyanates III: Part A. Mechanisms and chemistry. Progress in Organic Coatings 36(3): 148-172. https://doi.org/10.1016/S0300-9440(99)00042-9
  32. Wicks, D. A., & Wicks Jr, Z. W. 2001. Blocked isocyanates III: Part B: Uses and applications of blocked isocyanates. Progress in Organic Coatings 41(1-3): 1-83. https://doi.org/10.1016/S0300-9440(00)00164-8
  33. Zhou, X., Pizzi, A., Du, G. 2012. The effect of nanoclay on melamine-urea-formaldehyde wood adhesives. Journal of Adhesion Science and Technology 26: 1341-1348. https://doi.org/10.1163/156856111X618498