• Title/Summary/Keyword: Wnt/${\beta}$-catenin pathway

Search Result 93, Processing Time 0.021 seconds

β-catenin protein utilized by Tumour necrosis factor-α in porcine preadipocytes to suppress differentiation

  • Luo, Xiao;Li, Hui-Xia;Liu, Rong-Xin;Wu, Zong-Song;Yang, Ying-Juan;Yang, Gong-She
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.338-343
    • /
    • 2009
  • The Wnt/$\beta$-catenin signaling pathway alters adipocyte differentiation by inhibiting adipogenic gene expression. $\beta$-catenin plays a central role in the Wnt/$\beta$-catenin signaling pathway. In this study, we revealed that tumour necrosis factor-$\alpha$ (TNF-$\alpha$), a potential negative regulator of adipocyte differentiation, inhibits porcine adipogenesis through activation of the Wnt/$\beta$-catenin signaling pathway. Under the optimal concentration of TNF-$\alpha$, the intracellular $\beta$-catenin protein was stabilized. Thus, the intracellular lipid accumulation of porcine preadipocyte was suppressed and the expression of important adipocyte marker genes, including peroxisome proliferator-activated receptor-$\gamma$ (PPAR$\gamma$) and CCAAT/enhancer binding protein-$\alpha$ (C/EBP$\alpha$), were inhibited. However, a loss of $\beta$-catenin in porcine preadipocytes enhanced the adipogenic differentiation and attenuated TNF-$\alpha$ induced anti-adipogenesis. Taken together, this study indicated that TNF-$\alpha$ inhibits adipogenesis through stabilization of $\beta$-catenin protein in porcine preadipocytes.

$\beta$-catenin에 의한 신호전달과 그 역할 ($\beta$-catenin은 세포의 감초인가\ulcorner)

  • 정선주
    • The Zoological Society Korea : Newsletter
    • /
    • v.18 no.1
    • /
    • pp.16-25
    • /
    • 2001
  • Wnt signaling의 주요 분자인 $\beta$-catenin의 기능과 조절에 관한 연구, 특히 TCF family 단백질과 함께 작용하는 신호전달에 관한 연구가 최근에 활발히 진행되고 있다. $\beta$-catenin 단백질은 Drosophila나 Xenopus의 발생초기에 중요한 역할을 한다는 것이 알려져 있고 Wnt (Wingless) 단백질에 의하여 활성화되는 신호전달 과정에 관여한다고 알려져 있으므로, TCF 단백질들이 Wnt signalling pathway에 작용한다는 것을 의미한다. 즉, $\beta$-catenin/TCF complex는 발생초기의 세포의 운명을 결정하는 세포의 분화에 중요하리라 생각된다. 또한 $\beta$-catenin/TCF complex는 세포의 암화에도 중요하다는 것이 보고되었다. 정상세포의 경우, $\beta$-catenin은 APC 라는 tumor suppressor에 의하여 결합하고 단백질의 분해가 유도되어 핵 안의 TCF와 결합하지 못하는데, 암세포의 경우 APC가 결실되었거나 $\beta$-catenin의 양이 과도하게 발현되어 암세포화 되는 것으로 보인다. 즉, $\beta$-catenin은 일종의 oncogene으로 작용하는 단백질이며, 그 작용에 필수적인 전사인자가 TCF라는 것이다. 특히, 대장암세포에서 이 $\beta$-catenin/TCF complex에 의해 활성화되는 유전자로서 c-myc과 cyclin Dl 등이 있는 것으로 보아, $\beta$-catenin/TCF 단백질은 세포의 증식 및 사멸에 관여하는 단백질들의 발현을 조절하는 매우 중요한 인자라고 생각된다.

  • PDF

AXIN2 Polymorphisms, the β-Catenin Destruction Complex Expression Profile and Breast Cancer Susceptibility

  • Aristizabal-Pachon, Andres Felipe;Carvalho, Thais Inacio;Carrara, Helio Humberto;Andrade, Jurandyr;Takahashi, Catarina Satie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7277-7284
    • /
    • 2015
  • Background: The Wnt/${\beta}$-catenin signaling pathway is an important regulator of cellular functions such as proliferation, survival and cell adhesion. Wnt/${\beta}$-catenin signaling is associated with tumor initiation and progression; ${\beta}$-catenin mutations explain only 30% of aberrant signaling found in breast cancer, indicating that other components and/or regulation of the Wnt/${\beta}$-catenin pathway may be involved. Objective: We evaluated AXIN2 rs2240308 and rs151279728 polymorphisms, and expression profiles of ${\beta}$-catenin destruction complex genes in breast cancer patients. Materials and Methods: We collected peripheral blood samples from 102 breast cancer and 102 healthy subjects. The identification of the genetic variation was performed using PCR-RFLPs and DNA sequencing. RT-qPCR was used to determine expression profiles. Results: We found significant association of AXIN2 rs151279728 and rs2240308 polymorphisms with breast cancer risk. Significant increase was observed in AXIN2 level expression in breast cancer patients. Further analyses showed APC, ${\beta}$-catenin, CK1${\alpha}$, GSK3${\beta}$ and PP2A gene expression to be associated to clinic-pathological characteristics. Conclusions: The present study demonstrated, for the first time, that AXIN2 genetic defects and disturbance of ${\beta}$-catenin destruction complex expression may be found in breast cancer patients, providing additional support for roles of Wnt/${\beta}$-catenin pathway dysfunction in breast cancer tumorigenesis. However, the functional consequences of the genetic alterations remain to be determined.

BMP-2-Enhanced Chondrogenesis Involves p38 MAPK-mediated Down-Regulation of Wnt-7a Pathway

  • Jin, Eun-Jung;Lee, Sun-Young;Choi, Young-Ae;Jung, Jae-Chang;Bang, Ok-Sun;Kang, Shin-Sung
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.353-359
    • /
    • 2006
  • The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates $Wnt-7a/{\beta}$-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of ${\beta}$-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with ${\beta}$-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of ${\beta}$-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of ${\beta}$-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells.

Association of β-Catenin with Fat Accumulation in 3T3-L1 Adipocytes and Human Population (β-catenin 유전자의 3T3-L1 지방세포 및 인체에서의 지방축적 연관성 연구)

  • Bae, Sung-Min;Lee, Hae-Yong;Chae, Soo-Ahn;Oh, Dong-Jin;Park, Suk-Won;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1301-1309
    • /
    • 2011
  • The major function of adipocytes is to store fat in the form of triglycerides. One of the signaling pathways known to affect adipogenesis, i.e. fat formation, is the WNT/${\beta}$-catenin pathway which inhibits the expression and activity of key regulators of adipogenesis. The purpose of this research is to find genes among the WNT/${\beta}$-catenin pathway which regulate adipogenesis by using small interfering (si) RNA and to find the association of single nucleotide polymorphisms (SNPs) of the gene with serum triglyceride levels in the human population. To elucidate the effects of ${\beta}$-catenin siRNA on adipogenesis key factors, PPAR${\gamma}$ and C/EBP${\alpha}$, we performed real-time PCR and western blotting experiments for the analyses of mRNA and protein levels. It was found that the siRNA-mediated knockdown of ${\beta}$-catenin upregulates adipogenesis key factors. However, upstream regulators of the WNT/${\beta}$-catenin pathway, such as DVL2 and LRP6, had no significant effects compared to ${\beta}$-catenin. These results indicate that ${\beta}$-catenin is a candidate gene for human fat accumulation. In general, serum triglyceride level is a good indicator of fat accumulation in humans. According to statistical analyses of the association between serum triglyceride level and SNPs of ${\beta}$-catenin, -10,288 C>T SNP (rs7630377) in the promoter region was significantly associated with serum triglyceride levels (p<0.05) in 290 Korean subjects. On the other hand, serum cholesterol levels were not significantly associated with SNPs of the ${\beta}$-catenin gene. The results of this study showed that ${\beta}$-catenin is associated with fat accumulation both in vitro and in the human population.

The Research Progress of the Interactions between miRNA and Wnt/beta-catenin Signaling Pathway in Breast Cancer of Human and Mice

  • Ye, Ni;Wang, Bin;Quan, Zi-Fang;Pan, Hai-Bo;Zhang, Man-Li;Yan, Qi-Gui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1075-1079
    • /
    • 2014
  • MicroRNA expression is a research focus in studies of tumors. This article concentrates attention on potential links between tumors caused by mouse mammary tumor virus (MMTV) and human breast cancer, in order to provide theoretical basis for using mouse model to search for miRNA effects mediated by Wnt/beta-catenin signaling in human breast cancer. By analyzing interactions between miRNAs and the Wnt/beta-catenin signaling pathway in breast cancer, we hope to casts light on more biological functions of miRNAs in the process of tumor formation and growth and to explore their potential value in cancer diagnosis, prognosis and treatment. Our endeavor aimed at providing theoretical basis for finding safer, more effective methods for treatment of human breast cancer at the miRNA molecular level.

Ricinus communis extract inhibits the adipocyte differentiation through activating the Wnt/β-catenin signaling pathway

  • Kim, Bora;Kim, Hyun-Soo
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.524-528
    • /
    • 2017
  • Ricinus communis, belongs to the family Euphorbiaceae, has been known as medicinal plants for treatment of inflammation, tumors, antidiabetic, hepatoprotective and laxative. Compared to many pharmacological studies, the effect of R. communis extract on regulating adipogenesis as therapeutic drug for treating obesity has not been reported. R. communis extract (RCE) was investigated to determine its effects on the adipogenesis by monitoring the status of $Wnt/{\beta}-catenin$ signaling and factors involving the differentiation of adipocytes. The differentiation of 3T3-L1 cells monitored by Oil Red O staining was inhibited in concentration dependent manner by RCE. The luciferase activity of HEK 293-TOP cells containing pTOPFlash with Tcf4 response element-luciferase gene was increased approximately 2-folds by the treatment of RCE at concentrations of $100{\mu}g/mL$ compared to the control. Activation of the $Wnt/{\beta}-catenin$ pathway by RCE was further confirmed by immunocytochemical analysis which shows an increment of nuclear localization of ${\beta}-catenin$. In addition, safety of RCE was verified through performing neural stem cell morphology assay. Among the identified flavonoids in RCE, isoquercitrin was the most abundant. Therefore, these results indicate that the adipocyte differentiation was significantly reduced by isoquercitrin in R. communis. In this study, RCE suppresses the adipogenesis of 3T3-L1 cells via the activation of $Wnt/{\beta}-catenin$ signaling.

Inhibition of ClC-5 suppresses proliferation and induces apoptosis in cholangiocarcinoma cells through the Wnt/β-catenin signaling pathway

  • Shi, Zhe;Zhou, Liyuan;Zhou, Yan;Jia, Xiaoyan;Yu, Xiangjun;An, Xiaohong;Han, Yanzhen
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.299-304
    • /
    • 2022
  • Chloride channel-5 (ClC-5), an important branch of the ClC family, is involved in the regulation of the proliferation and cell-fate of a variety of cells, including tumor cells. However, its function in cholangiocarcinoma (CCA) cells remains enigmatic. Here, we discovered that ClC-5 was up-regulated in CCA tissues and CCA cell lines, while ClC-5 silencing inhibited CCA cell proliferation and induced apoptosis. Further mechanism studies revealed that ClC-5 inhibition could inhibit Wnt/β-catenin signaling activity and further activate the mitochondria apoptotic pathway in CCA cells. Furthermore, rescuing Wnt/β-catenin signaling activation eliminated the anti-tumor function of ClC-5 knockdown. Together, our research findings illustrated that ClC-5 inhibition plays an anti-tumor role in CCA cells via inhibiting the activity of the Wnt/β-catenin pathway, which in turn activates the mitochondrial apoptotic pathway.

Complex Interplay between the RUNX Transcription Factors and Wnt/β-Catenin Pathway in Cancer: A Tango in the Night

  • Sweeney, Kerri;Cameron, Ewan R.;Blyth, Karen
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.188-197
    • /
    • 2020
  • Cells are designed to be sensitive to a myriad of external cues so they can fulfil their individual destiny as part of the greater whole. A number of well-characterised signalling pathways dictate the cell's response to the external environment and incoming messages. In healthy, well-ordered homeostatic systems these signals are tightly controlled and kept in balance. However, given their powerful control over cell fate, these pathways, and the transcriptional machinery they orchestrate, are frequently hijacked during the development of neoplastic disease. A prime example is the Wnt signalling pathway that can be modulated by a variety of ligands and inhibitors, ultimately exerting its effects through the β-catenin transcription factor and its downstream target genes. Here we focus on the interplay between the three-member family of RUNX transcription factors with the Wnt pathway and how together they can influence cell behaviour and contribute to cancer development. In a recurring theme with other signalling systems, the RUNX genes and the Wnt pathway appear to operate within a series of feedback loops. RUNX genes are capable of directly and indirectly regulating different elements of the Wnt pathway to either strengthen or inhibit the signal. Equally, β-catenin and its transcriptional co-factors can control RUNX gene expression and together they can collaborate to regulate a large number of third party co-target genes.