Browse > Article

BMP-2-Enhanced Chondrogenesis Involves p38 MAPK-mediated Down-Regulation of Wnt-7a Pathway  

Jin, Eun-Jung (Department of Biology, College of Natural Sciences, Kyungpook National University)
Lee, Sun-Young (Department of Biology, College of Natural Sciences, Kyungpook National University)
Choi, Young-Ae (Department of Biology, College of Natural Sciences, Kyungpook National University)
Jung, Jae-Chang (Department of Biology, College of Natural Sciences, Kyungpook National University)
Bang, Ok-Sun (School of Biological Sciences, Seoul National University)
Kang, Shin-Sung (Department of Biology, College of Natural Sciences, Kyungpook National University)
Abstract
The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates $Wnt-7a/{\beta}$-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of ${\beta}$-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with ${\beta}$-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of ${\beta}$-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of ${\beta}$-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells.
Keywords
${\beta}$-Catenin; Chondrogenesis; p38 MAPK; Sox9; Wnt-7a.;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 32  (Related Records In Web of Science)
연도 인용수 순위
1 Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A., and de Crombrugghe, B. (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16, 2813−2828
2 Bang, O. S., Kim, E. J., Chung, J. G., Lee, S. R., Park, T. K., et al. (2000) Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage condensation of chick mesenchymal cells. Biochem. Biophys. Res. Commun. 278, 522−529
3 Chen, C. C., Rosenbloom, C. L., Anderson, D. C., and Manning, A. M. (1995) Selective inhibition of E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 expression by inhibitors of I kappa B-alpha phosphorylation. J. Immunol. 155, 3538−35345
4 Conacci-Sorrell, M., Zhurinsky, J., and Ben-Ze'ev, A. (2002) The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Invest. 109, 987−991
5 Gomes, R. R. Jr., Joshi, S. S., Farach-Carson, M. C., and Carson, D. D. (2006) Ribozyme-mediated perlecan knockdown impairs chondrogenic differentiation of C3H10T1/2 fibroblasts. Differentiation 74, 53−63   DOI   ScienceOn
6 Ide, H., Wada, N., and Uchiyama, K. (1994) Sorting out of cells from different parts and stages of the chick limb bud. Dev. Biol. 162, 71−76
7 Jin, E.-J., Park, J. H., Lee, S. Y., Chun, J. S., Bang, O. S., et al. (2006) Wnt-5a is involved in TGF-beta3-stimulated chondrogenic differentiation of chick wing bud mesenchymal cells. Int. J. Biochem. Cell Biol. 38, 183−195   DOI   ScienceOn
8 Longobardi, L., Torello, M., Buckway, C., O'Rear, L., Horton, W. A., et al. (2003) A novel insulin-like growth factor (IGF)- independent role for IGF binding protein-3 in mesenchymal chondroprogenitor cell apoptosis. Endocrinology 144, 1695−1702   DOI   ScienceOn
9 Lyu, L. and Joo, C. K. (2005) Wnt-7a up-regulates matrix metalloproteinase- 12 expression and promotes cell proliferation in corneal epithelial cells during wound healing. J. Biol. Chem. 280, 21653−21660   DOI   ScienceOn
10 Maleski, M. P. and Knudson, C. B. (1996) Hyaluronan-mediated aggregation of limb bud mesenchyme and mesenchymal condensation during chondrogenesis. Exp. Cell Res. 225, 55-66   DOI   ScienceOn
11 Solchaga, L. A., Penick, K., Porter, J. D., Goldberg, V. M., and Caplan, A. I. (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell. Physiol. 203, 398−409   DOI   ScienceOn
12 Stott, N. S., Jiang, T. X., and Chuong, C. M. (1999) Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2. J. Cell. Physiol. 180, 314−324   DOI   ScienceOn
13 Tavella, S., Raffo, P., Tacchetti, C., Cancedda, R., and Castagnola, P. (1994) N-CAM and N-cadherin expression during in vitro chondrogenesis. Exp. Cell Res. 215, 354−362
14 Yoon, Y. M., Oh, C. D., Kang, S. S., and Chun, J. S. (2000) Protein kinase A regulates chondrogenesis of mesenchymal cells at the post-precartilage condensation stage via protein kinase C-alpha signaling. J. Bone Miner. Res. 15, 2197−2205   DOI   ScienceOn
15 Zehentner, B. K., Dony, C., and Burtscher, H. (1999) The transcription factor Sox9 is involved in BMP-2 signaling. J. Bone Miner. Res. 14, 1734−1741   DOI   ScienceOn
16 Zhang, C., Basta, T., Jensen, E. D., and Klymkowsky, M. W. (2003) The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 130, 5609−5624   DOI   ScienceOn
17 Yoon, B. S. and Lyons, K. M. (2004) Multiple functions of BMPs in chondrogenesis. J. Cell. Biochem. 93, 93−103   DOI   ScienceOn
18 Akiyama, H., Lyons, J. P., Mori-Akiyama, Y., Yang, X., Zhang, R., et al. (2004) Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 18, 1072−1087   DOI   ScienceOn
19 Baur, S. T., Mai, J. J., and Dymecki, S. M. (2000) Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development 127, 605−619
20 Chuong, C. M., Widelitz, R. B., Jiang, T. X., Abbott, U. K., Lee, Y. S., et al. (1993) Roles of adhesion molecules NCAM and tenascin in limb skeletogenesis: analysis with antibody perturbation, exogenous gene expression, talpid mutants and activin stimulation. Prog. Clin. Biol. Res. 383, 465−474
21 Knudson, C. B. and Knudson, W. (2001) Cartilage proteoglycans. Semin. Cell Dev. Biol. 12, 69−78
22 Lefebvre, V., Huang, W., Harley, V. R., Goodfellow, P. N., and de Crombrugghe, B. (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol. Cell. Biol. 17, 2336–2346
23 Oberlender, S. A. and Tuan, R. S. (1994a) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120, 177−187
24 Seghatoleslami, M. R., Martinez, A., Cuttitta, F., and Kosher, R. A. (2003) Distribution and possible function of an adrenomedullin- like peptide in the developing chick limb bud. Int. J. Dev. Biol. 469, 957−961
25 Uusitalo, H., Hiltunen, A., Ahonen, M., Gao, T. J., Lefebvre, V., et al. (2001) Accelerated up-regulation of L-Sox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. J. Bone Miner. Res. 16, 1837−1845   DOI   ScienceOn
26 Park, Y., Sugimoto, M., Watrin, A., Chiquet, M., and Hunziker, E. B. (2005) BMP-2 induces the expression of chondrocytespecific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 13, 527−536   DOI   ScienceOn
27 DeLise, A. M., Fischer, L., and Tuan, R. S. (2000) Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8, 309−334
28 Sandell, L. J. and Adler, P. (1999) Developmental patterns of cartilage. Front. Biosci. 15, 731−742
29 Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R., and de Crombrugghe, B. (1999) Sox9 is required for cartilage formation. Nat. Genet. 22, 85−89
30 Seto, H., Kamekura, S., Miura, T., Yamamoto, A., Chikuda, H., et al. (2004) Distinct roles of Smad pathways and p38 pathways in cartilage-specific gene expression in synovial fibroblasts. J. Clin. Invest. 113, 718−726.
31 Zhou, G., Lefebvre, V., Zhang, Z., Eberspaecher, H., and de Crombrugghe, B. (1998) Three high mobility group-like sequences within a 48-base pair enhancer of the Col2a1 gene are required for cartilage-specific expression in vivo. J. Biol. Chem. 273, 14989−14997   DOI   ScienceOn
32 Shea, C. M., Edgar, C. M., Einhorn, T. A., and Gerstenfeld, L. C. (2003) BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J. Cell. Biochem. 90, 1112−1127   DOI   ScienceOn
33 Zhao, Q., Eberspaecher, H., Lefebvre, V., and De Crombrugghe, B. (1997) Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev. Dyn. 209, 377−386
34 Yi, S. E., Daluiski, A., Pederson, R., Rosen, V., and Lyons, K. M. (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127, 621−630
35 Fisher, M. C., Li, Y., Seghatoleslami, M. R., Dealy, C. N., and Kosher, R. A. (2006) Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation. Matrix Biol. 25, 27−39   DOI   ScienceOn
36 DeLise, A. M. and Tuan R. S. (2002b). Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro. J. Cell Biochem. 87, 342−359   DOI   ScienceOn
37 Boulet, A. M. and Capecchi, M. R. (2004) Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development 131, 299−309   DOI   ScienceOn
38 Goessler, U. R., Bugert, P., Bieback, K., Deml, M., Sadick, H., et al. (2005) In-vitro analysis of the expression of TGFbetasuperfamily- members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell. Mol. Biol. Lett. 10, 345−362
39 DeLise, A. M. and Tuan, R. S. (2002a). Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro. Dev. Dyn. 225, 195−204   DOI   ScienceOn
40 Nakamura, K., Shirai, T., Morishita, S., Uchida, S., Saeki-Miura, K., et al. (1999) p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp. Cell Res. 250, 351−363   DOI   ScienceOn
41 Yoon, B. S., Ovchinnikov, D. A., Yoshii, I., Mishina, Y., Behringer, R. R., et al. (2005) Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc. Natl. Acad. Sci. USA 102, 5062−5067
42 Blaney Davidson, E. N., Vitters, E. L., van der Kraan, P. M., and van den Berg, W. B. (2006) Expression of TGF-beta and the TGF-beta signaling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis role in cartilage degradation, chondrogenesis and osteophyte formation [online]. Ann. Rheum. Dis. 0: ard.2005.045971v1
43 Phornphutkul, C., Wu, K. Y., Yang, X., Chen, Q., and Gruppuso, P. A. (2004) Insulin-like growth factor-I signaling is modified during chondrocyte differentiation. J. Endocrinol. 183, 477−486   DOI   ScienceOn
44 Grotewold, L. and Ruther, U. (2002) Bmp, Fgf and Wnt signaling in programmed cell death and chondrogenesis during vertebrate limb development: the role of Dickkopf-1. Int. J. Dev. Biol. 46, 943−947
45 Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., et al. (2003) A computational model on the modulation of mitogen- activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signaling. Biochem. J. 15, 451−463
46 Hall, B. K. and Miyake, T. (1995) Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int. J. Dev. Biol. 39, 881−893
47 Oh, C. D., Chang, S. H., Yoon, Y. M., Lee, S. J., Lee, Y. S., et al. (2000) Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem. 275, 5613−5619   DOI   ScienceOn
48 Zhang, W. V. and Stott, N. S. (2004) BMP-2-modulated chondrogenic differentiation in vitro involves down-regulation of membrane- bound beta-catenin. Cell Commun. Adhes. 1, 89−102
49 Oberlender, S. A. and Tuan, R. S. (1994b) Spatiotemporal profile of N-cadherin expression in the developing limb mesenchyme. Cell Adhes. Commun. 2, 521−537   DOI
50 Izzo, M. W., Pucci, B., Tuan, R. S., and Hall, D. J. (2002) Gene expression profiling following BMP-2 induction of mesenchymal chondrogenesis in vitro. Osteoarthritis Cartilage 10, 23−33   DOI   ScienceOn
51 Tufan, A. C. and Tuan, R. S. (2001) Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered Ncadherin- related functions. FASEB J. 15, 1436−1438
52 Tsumaki, N., Nakase, T., Miyaji, T., Kakiuchi, M., Kimura, T., et al. (2002) Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis. J. Bone Miner. Res. 17, 898−906
53 Ng, L. J., Wheatley, S., Muscat, G. E., Conway-Campbell, J., Bowles, J., et al. (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev. Biol. 183, 108–121   DOI   ScienceOn
54 Jadlowiec, J. A., Zhang, X., Li, J., Campbell, P. G., and Sfeir, C. (2006) Extracellular matrix-mediated signaling by dentin phosphophoryn involves activation of the Smad pathway independent of bone morphogenetic protein. J. Biol. Chem. 281, 5341−5347   DOI   ScienceOn
55 Fischer, L., Boland, G., and Tuan, R. S. (2002) Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J. Cell Biochem. 277, 30870−30878
56 Haas, A. R. and Tuan, R. S. (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function. Differentiation 64, 77−89   DOI   ScienceOn
57 Ju, H., Venema, V. J., Liang, H., Harris, M. B., Zou, R., et al. (2000) Bradykinin activates the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway in vascular endothelial cells: localization of JAK/STAT signaling proteins in plasmalemmal caveolae. Biochem. J. 351(Pt 1), 257−264   DOI   ScienceOn
58 Denker, A. E., Haas, A. R., Nicoll, S. B., and Tuan, R. S. (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation 64, 67−76   DOI   ScienceOn
59 Hill, T. P., Spater, D., Taketo, M. M., Birchmeier, W., and Hartmann, C. (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727−738   DOI   ScienceOn