Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.3.1075

The Research Progress of the Interactions between miRNA and Wnt/beta-catenin Signaling Pathway in Breast Cancer of Human and Mice  

Ye, Ni (Animal Biotechnology Center, Sichuan Agricultural University)
Wang, Bin (Animal Biotechnology Center, Sichuan Agricultural University)
Quan, Zi-Fang (Animal Biotechnology Center, Sichuan Agricultural University)
Pan, Hai-Bo (Animal Biotechnology Center, Sichuan Agricultural University)
Zhang, Man-Li (Animal Biotechnology Center, Sichuan Agricultural University)
Yan, Qi-Gui (Animal Biotechnology Center, Sichuan Agricultural University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.3, 2014 , pp. 1075-1079 More about this Journal
Abstract
MicroRNA expression is a research focus in studies of tumors. This article concentrates attention on potential links between tumors caused by mouse mammary tumor virus (MMTV) and human breast cancer, in order to provide theoretical basis for using mouse model to search for miRNA effects mediated by Wnt/beta-catenin signaling in human breast cancer. By analyzing interactions between miRNAs and the Wnt/beta-catenin signaling pathway in breast cancer, we hope to casts light on more biological functions of miRNAs in the process of tumor formation and growth and to explore their potential value in cancer diagnosis, prognosis and treatment. Our endeavor aimed at providing theoretical basis for finding safer, more effective methods for treatment of human breast cancer at the miRNA molecular level.
Keywords
miRNA; MMTV; breast cancer; Wnt/beta-catenin signaling pathway; mouse and man;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Melana SM, Holland JF, Pogo BGT, (2001). Search for Mouse Mammary Tumor Virus-like env Sequences in Cancer and Normal Breast from the Same Individuals. Clinic Cancer Res, 7, 283-4.
2 Liu B, Wang Y, Melana SM, et al (2001). Identification of a proviral structure n human breast cancer. Clinic Cancer Res, 61, 1754-9.
3 Luo T, Wu XT, Zhang MM, et al (2006). Study of mouse mammary tumor virus-like gene sequences expressing in breast tumors of Chinese women. J Sichuan University (Medical Science Edition), 37, 844-6.
4 Martello G, Zacchigna L, Inui M, et al (2007). MicroRNA control of Nodal signaling. Nature, 449, 183-8.   DOI
5 Mok MT, Lawson JS, Iacopetta BJ, et al (2008). Mouse mammary tumor virus-like env sequences in human breast cancer. Int J Cancer, 122, 2864-70.   DOI   ScienceOn
6 Hutvagner G, Zamore PD (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297, 2056-60.   DOI   ScienceOn
7 Heo I, Joo C, Cho J, et al (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell, 32, 276-84.   DOI   ScienceOn
8 Huang GL, Guo GL, Zhang XH (2008). The research progress of miRNAs in breast cancer. Chinese Journal of breast diseases (electronic version), 2, 301-7.
9 Huang K, Zhang JX, Han L, et al (2010). MicroRNA roles in beta-catenin pathway. Mol Cancer, 9, 252.   DOI   ScienceOn
10 Indik S, Guzburg WH, Salmons B, et al (2005). Mouse mammary tumor virus infects human cells. Cancer Res, 65, 6651-9.   DOI   ScienceOn
11 Korpal M, Lee ES, Hu G, et al (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem, 283, 14910-4.   DOI   ScienceOn
12 Kruger JA, Kaplan CD, Luo Y, et al (2006). Characterization of stem cell-like cancer cells in immune-competent mice. Blood, 108, 3906-12.   DOI   ScienceOn
13 Ladeiro, Y, Couchy, G, Balabaud, C, et al (2008). MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology, 47, 1955-63.   DOI   ScienceOn
14 Lai EC (2002). MicroRNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 30, 363-4.   DOI   ScienceOn
15 Lee RC, Feinbaum RL, Ambros V, et al (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-54.   DOI   ScienceOn
16 Chen J, Wang L, Matyunina LV, et al (2011). Overexpression of miR-429 induces mesenchymal-to-epithelial transition (MET) in metastatic ovarian cancer cells. Gynecol. Oncol, 121, 200-5.   DOI   ScienceOn
17 Burk U, Schubert J, Wellner U, et al (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasions in cancer cells. EMBO Rep, 9, 582-9.   DOI   ScienceOn
18 Cai WY, Wei TZ, Wu QC, et al (2013). Wnt/${\beta}$-catenin pathway represses let-7 microRNAs expression via transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci, 126, 2877-89.   DOI   ScienceOn
19 Cai JC, Guan HY, Fang LS, et al (2013). MicroRNA-374a activates Wnt/${\beta}$-catenin signaling to promote breast cancer metastasis. J Clin Invest, 123, 566-76.
20 Frankel LB, Christoffersen NR, Jacobsen A, et al (2008). Programmed cell death 4 (PDCD) is an important functional target of the microRNA miR-21 in breast cancer cells. Biol Chem, 283, 1026-33.   DOI   ScienceOn
21 Gregory PA, Bert AG, Paterson EL, et al (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 10, 593-601.   DOI   ScienceOn
22 Hashimi ST, Fulcher JA, Chang MH, et al (2009). MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood, 114, 404-14.   DOI   ScienceOn
23 Hatzis P, van der Flier LG, van Driel MA, et al (2008). Genome-Wide Pattern of TCF7L2/TCF4 Chromatin Occupancy in Colorectal Cancer Cells. Mol Cell Biol, 28, 2732-44.   DOI   ScienceOn
24 Theodorou V, Kimm MA, Boer M, et al (2007). MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat Genet, 39, 759-69.   DOI   ScienceOn
25 Si ML, Zhu S, Wu H, et al (2007). miR-21-mediated tumor growth. Oncogene, 26, 2799-803.   DOI   ScienceOn
26 Stingl J, Eirew P, Ricketson I, et al (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439, 993-7.
27 Tepera SB, McCrea PD, Rosen JM, (2003). A ${\beta}$-catenin survival signal is required for normal lobular development in the mammary gland. Cell Sci, 116, 1137-49.   DOI   ScienceOn
28 Tryndyak VP, Beland FA, Pogribny IP (2010). E-cadherin transcriptional downregulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int J Cancer, 126, 2575-83.
29 Asaga S, Kuo C, Nguyen T, et al (2011). Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem, 57, 84-91.   DOI   ScienceOn
30 Tsukamoto AS, Grosschedl R, Guzman RC, et al (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell, 55, 619-25.   DOI   ScienceOn
31 Asangani IA, Rasheed SA, Nikolova DA, et al (2008). MicroRNA-21 (miR-21) post-transcriptionally down-regulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27, 2128-36.   DOI   ScienceOn
32 Patrawala L, Calhoun T, Schneider-Broussard R, et al (2005). Side Population Is Enriched in Tumorigenic, Stem-Like Cancer Cells, whereas ABCG2+ and ABCG2-Cancer Cells Are Similarly Tumorigenic. Cancer Res, 65, 6207-19.   DOI   ScienceOn
33 Park SM, Gaur AB, Lengyel E, et al (2008). The miR-200 family determies the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 22, 894-907.   DOI   ScienceOn
34 Parkin NT, Kitajewski J, Varmus HE, et al (1993). Activity of Wnt-1 as a transmembrane protein. Genes Dev, 7, 2181-93.   DOI   ScienceOn
35 Pasquinelli AE, Reinhart BJ, Slack F, et al (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408, 86-9.   DOI   ScienceOn
36 Piskounova E, Viswanathan SR, Janas M, et al (2008). Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem, 283, 21310-4.   DOI   ScienceOn
37 Reddy SD, Ohshiro K, Rayala SK, et al (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res, 68, 8195-200.   DOI   ScienceOn
38 Zhu S, Si ML, Wu H, et a1 (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPMl). Biol Chem, 282, 14328-36.   DOI   ScienceOn
39 Reinhart BJ, Slack FJ, Basson M, et al (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901-6.   DOI   ScienceOn
40 Rybak A, Fuchs H, Smirnova L, et al (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol, 10, 987-93.   DOI   ScienceOn
41 Yu F, Yao H, Zhu P, et al (2007). let-7 regulates self-renewal and tumorigenicity of breast cancer cells. Cell, 131, 1109-23.   DOI   ScienceOn
42 Zapata-Benavides P, Saavedra-Alonso S, Zamora-Avila D, et a1 (2007). Mouse mammary tumor virus-like gene sequences in breast cancer samples of Mexican women. Intervirology, 50, 402-7.   DOI   ScienceOn
43 Zeng Y, Yi R, Cullen BR, (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA, 100, 9779-84.   DOI   ScienceOn
44 Newman MA, Thomson JM, Hammond SM, et al (2008). Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA, 14, 1539-49.   DOI   ScienceOn
45 Ono M, Yasunaga T, Miyata T, et al (1986). Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. Virol, 60, 589-98
46 Volinia S, Calin GA, Liu C G, et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103, 2257-61.   DOI   ScienceOn
47 Wang Y, Holland JF, Bleiweiss IJ, et al (1995). Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res, 55, 5173-9.
48 Kong D, Li Y, Wang Z, et al (2009). miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells, 27, 1712-21.   DOI   ScienceOn
49 Wang Y, PelissOn I, Melana SM, et al (2001). MMTV-like env gene seguences in human breast cancer. Arch Virol, 146, 171-80.   DOI
50 Yan LX, Huang XF, Shao Q, et al (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14, 2348-60.   DOI   ScienceOn