• Title/Summary/Keyword: Wireless sensors

Search Result 1,140, Processing Time 0.021 seconds

Development and Application of Wireless Power Transmission Systems for Wireless ECG Sensors (지속적인 심장질환 모니터링을 위한 인체 삽입형 생체 센서의 무선전력전송 시스템)

  • Heo, Jin-Chul;Lee, Jong-Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.111-117
    • /
    • 2019
  • We investigated the variations in the magnetic-field distribution and power transmission efficiency, resulting from changes in the relative positions of the transmitting and receiving coils, for electromagnetic-induction-type wireless power transmission using an elliptical receive coil. Results of simulations using a high-frequency structure simulator were compared to actual measurement results. The simulations showed that the transmission efficiency could be maintained relatively stable even if the alignment between the transmitting and receiving coils was changed to some extent. When the centre of the receiving coil was perfectly aligned with the centre of the transmitting coil, the transmission efficiency was the maximum; however, the degree of decrease in the transmission efficiency was small even if the centre of the receiving coil moved by ± 10mm from the centre of the transmitting coil. Therefore, it is expected that the performance of the wireless power transmission system will not be degraded significantly even if perfect alignment is not maintained. The results suggested a standardized application method of wireless transmission in the utilization of wireless power for implantable sensors.

Study of Information Maintenance Components in Wireless Network Environment based on Sensors (센서기반 무선 네트워크 환경에서 정보 유지관리에 관한 구성요소 연구)

  • Lee, Hyun-Chang;Xu, Chen-Lin;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2640-2644
    • /
    • 2014
  • With the development of technology, wireless sensor networks (WSN) are wireless networks of consisting a large number of small and low-cost sensors. Wireless sensor networks facilitate collaboration to achieve the perception of information collection, processing and transmission tasks in deployment area. They have various purposes such as military, disaster relief, medical rescue, environmental monitoring, precision farming and manufacturing industry etc. Therefore, technologies for data maintaining technologies in sensor network environment is one of essential parts of sensor networks. In this paper, we present the essential particulars about data management technology at wireless sensor network environments and propound the issues. Further, we could organize and develop a systematic approach in solving the issues.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

Drone Deployment Using Coverage-and-Energy-Oriented Technique in Drone-Based Wireless Sensor Network (드론 기반 무선 센서 네트워크에서의 커버리지와 에너지를 고려한 드론 배치)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.15-22
    • /
    • 2019
  • Awireless sensor network utilizes small sensors with a low cost and low power being deployed over a wide area. They monitor the surrounding environment and gather the associated information to transmit it to a base station via multi-hop transmission. Most of the research has mainly focused on static sensors that are located in a fixed position. Unlike a wireless sensor network based on static sensors, we can exploit drone-based technologies for more efficient wireless networks in terms of coverage and energy. In this paper, we introduce a transmission power model and a video encoding power model to design the network environment. We also explain a priority mapping scheme, and deploy drones oriented for network coverage and energy consumption. Through our simulations, this research shows coverage and energy improvements in adrone-based wireless sensor network with fewer sensors, compared to astatic sensor-based wireless sensor network. Concretely, coverage increases by 30% for thedrone-based wireless sensor network with the same number of sensors. Moreover, we save an average of 25% with respect to the total energy consumption of the network while maintaining the coverage required.

Ant-based Routing in Wireless Sensor Networks (개미 시스템을 이용한 무선 센서 네트워크 라우팅 알고리즘 개발)

  • Ok, Chang-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.2
    • /
    • pp.53-69
    • /
    • 2010
  • This paper proposes an ant-based routing algorithm, Ant System-Routing in wireless Senor Networks(AS-RSN), for wireless sensor networks. Using a transition rule in Ant System, sensors can spread data traffic over the whole network to achieve energy balance, and consequently, maximize the lifetime of sensor networks. The transition rule advances one of the original Ant System by re-defining link cost which is a metric devised to consider energy-sufficiency as well as energy-efficiency. This metric gives rise to the design of the AS-RSN algorithm devised to balance the data traffic of sensor networks in a decentralized manner and consequently prolong the lifetime of the networks. Therefore, AS-RSN is scalable in the number of sensors and also robust to the variations in the dynamics of event generation. We demonstrate the effectiveness of the proposed algorithm by comparing three existing routing algorithms: Direct Communication Approach, Minimum Transmission Energy, and Self-Organized Routing and find that energy balance should be considered to extend lifetime of sensor network and increase robustness of sensor network for diverse event generation patterns.

System Architecture of Atopic Dermatitis Adjuvant for Children Using Wireless Sensor

  • Balitana, Maricel O.;Kim, Seok-Soo
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Pre schools with state of the art facilities that would provide not just academic excellence but also ensure the safety and provide efficient healthcare to their pupils relative to Atopic Dermatitis with Asthma is the main objective of this research One of the most promising applications of sensor networks is for human healthcare monitoring. Due to recent technological advances in sensor, low power microelectronics and miniaturization, and wireless networking enable the design and proliferation of this wireless sensor networks capable of autonomously monitoring and controlling environments. Thus, this research presents the utilization of such microelectronic sensor and plots the hardware and software architecture of a wireless sensor network system with real-time pupil monitoring that integrates vital sign sensors, location sensor and allergen sensor. This proposed architecture for wearable sensors can be used as active tags which can track pupil's location within the school's premises, identify possible atopic dermatitis with asthma allergens, it would monitor and generate a health status report of the pupil.

WiSeMote: a novel high fidelity wireless sensor network for structural health monitoring

  • Hoover, Davis P.;Bilbao, Argenis;Rice, Jennifer A.
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.271-298
    • /
    • 2012
  • Researchers have made significant progress in recent years towards realizing effective structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and distributed, in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low power design and operation are still critically important. This research presents the WiSeMote: a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM deployments. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.

Monitoring Sensor Robot System based on Wireless Sensor Network (무선 센서 네트워크 기반의 모니터링 센서 로봇 시스템)

  • Choi, Ho-Jin;Pyun, Jae-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2330-2336
    • /
    • 2008
  • This paper deals with monitoring sensor robot control system for the application of wireless sensor network. In order to control the direction and speed of robot via remote sensing environment, low power, low weight sensors with ad-hoc networking between robots' sensors have been used. These wireless sensor network based robot monitoring system can be used for remote observation and detection of robots in the areas such as factories, power plants and other dangerous areas which are difficult for human access.

Development and deployment of large scale wireless sensor network on a long-span bridge

  • Pakzad, Shamim N.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.525-543
    • /
    • 2010
  • Testing and validation processes are critical tasks in developing a new hardware platform based on a new technology. This paper describes a series of experiments to evaluate the performance of a newly developed MEMS-based wireless sensor node as part of a wireless sensor network (WSN). The sensor node consists of a sensor board with four accelerometers, a thermometer and filtering and digitization units, and a MICAz mote for control, local computation and communication. The experiments include calibration and linearity tests for all sensor channels on the sensor boards, dynamic range tests to evaluate their performance when subjected to varying excitation, noise characteristic tests to quantify the noise floor of the sensor board, and temperature tests to study the behavior of the sensors under changing temperature profiles. The paper also describes a large-scale deployment of the WSN on a long-span suspension bridge, which lasted over three months and continuously collected ambient vibration and temperature data on the bridge. Statistical modal properties of a bridge tower are presented and compared with similar estimates from a previous deployment of sensors on the bridge and finite element models.

Self-Organized Hierarchy Tree Protocol for Energy-Efficiency in Wireless Sensor Networks

  • THALJAOUI, Adel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.230-238
    • /
    • 2021
  • A sensor network is made up of many sensors deployed in different areas to be monitored. They communicate with each other through a wireless medium. The routing of collected data in the wireless network consumes most of the energy of the network. In the literature, several routing approaches have been proposed to conserve the energy at the sensor level and overcome the challenges inherent in its limitations. In this paper, we propose a new low-energy routing protocol for power grids sensors based on an unsupervised clustering approach. Our protocol equitably harnesses the energy of the selected cluster-head nodes and conserves the energy dissipated when routing the captured data at the Base Station (BS). The simulation results show that our protocol reduces the energy dissipation and prolongs the network lifetime.