• Title/Summary/Keyword: Wireless LANs

Search Result 141, Processing Time 0.02 seconds

Collision Reduction Scheme based on Station Grouping in IEEE 802.11 Wireless LANs (IEEE 802.11 무선 랜에서 단말 그룹화를 통한 충돌 감소 방법)

  • Choi, Jun-Hyuk;Kim, Sunmyeng
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.393-395
    • /
    • 2015
  • IEEE 802.11 무선 랜은 단말들 간의 채널을 공유하기 위해 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) 기반의 DCF(Distributed Coordination Function) 프로토콜을 제공한다. DCF는 네트워크상의 단말수가 증가할수록 충돌 확률이 증가하여 전체적인 성능 감소를 야기한다. 이는 네트워크에 있는 모든 단말이 동시에 채널 경쟁을 하기 때문이다. 충돌 확률을 줄이고 성능을 향상시키기 위해 단말을 여러 그룹으로 나누고 각 그룹에 속하는 단말들간 채널 경쟁을 수행하는 가상 그룹 방법이 제안되었다. 그러나 가상 그룹 방법은 각 단말이 독립적으로 그룹 수를 결정하고 자신이 어느 그룹에 속해 동작할지 결정한다. 따라서 단말마다 서로 그룹 수가 다를 수 있고 단말이 하나도 포함되지 않은 그룹이 존재할 수 있다. 즉, 가상 그룹 방법은 단말간 공평성 문제가 있고 오동작 가능성이 있다. 이 문제를 해결하기 위해 본 논문에서는 비지톤과 타이머를 이용하여 단말간 동기화를 맞춰 그룹 수 및 자신의 그룹 번호를 독립적으로 결정하는 방법을 제안한다. 그룹 수는 현재 채널 경쟁 수준을 고려하여 결정한다. 단말들의 그룹화를 통해 충돌확률을 줄이고 네트워크 성능을 향상시킨다.

An Efficient Authentication Protocol Using Single Bit Synchronization for Wireless LAN Environment (단일 Bit 동기화를 이용한 무선 LAN 환경에서의 효율적인 인증 프로토콜)

  • Jo Hea Suk;Youn Hee Yong
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.747-754
    • /
    • 2004
  • Today, wireless LANs are widely deployed in various places such as corporate office conference rooms, industrial warehouses, Internet-ready classrooms, etc. However, new concerns have been raised regarding suity. Currently, both virtual private network(VPN) and WEP are used together as a strong authentication mechanism. While security is increased by using VPN and WEP together, unnecessary redundancy occurs causing power consumption increase and authentication speed decrease in the authentication process. In this paper a new synchronization protocol for authentication is proposed which allows simple authentication, minimal power consumption at the mobile station, and high utilization of authentication stream. This is achieved by using one bit per a frame authentication, while main authentication process including synchronization is handled by access points. Computer simulation reveals that the proposed scheme significantly improves the authentication efficiency in terms of the number of authenticated frames and authentication speed compared with an earlier protocol employing a similar authentication approach.

Energy-Efficient Transmission Bandwidth Adaptation in IEEE 802.11 WLANs (무선랜에서 에너지 효율적인 전송 대역폭 결정 기법)

  • Hwang, Hwanwoong;Yun, Ji-Hoon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.651-657
    • /
    • 2018
  • IEEE 802.11 wireless LANs support 20, 40, 80 and 160MHz bandwidth transmission. In general, the data rate increases as the transmission bandwidth increases. However, the transmission power spectral density decreases, which may lead to increasing packet errors and retransmissions. In this paper, we derive a mathematical model of energy consumption with consideration of various factors such as transmission bandwidth, packet error rate and data size. Based on the model, we design a scheme to adapt a transmission bandwidth for each frame transmission. The scheme estimates packet error rates for different bandwidth cases, updates the table of energy consumption and selects the best bandwidth for the next transmission. The simulation study with VoIP traffic shows the energy consumption of the scheme under various environments.

A Fast Handoff Algorithm for IEEE 802.11 WLANs using Dynamic Scanning Time (가변적인 탐색시간을 이용한 IEEE 802.11 무선랜의 고속 핸드오프 알고리듬)

  • 권경남;이채우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.128-139
    • /
    • 2004
  • As the Internet usage grows, people want to access the Internet while they are moving. To satisfy this requirement economically, IEEE 802.11 Wireless LANs(WLANs) are rapidly deployed. In order to support mobility, WLANs must provide smooth handoff mechanism. Recent studies show, however, handoff delay of WLANs exceeds 300ms, most of which is due to slow scanning mechanism finding a new AP. With this handoff delay, current WLANs is not suitable to provide seamless realtime interactive services such as VoIP sevice. In this paper, we analyze the current handoff method of IEEE 802.11 and we propose a new handoff algorithm which can decrease time needed for searching a new AP and thus reduce overall handoff time. We show by simulation that the proposed algorithm has shorter handoff delay than current handoff method.

Dynamic Channel-Time Assignments based on the link status in IEEE 802.15.3 High-rate WPAN (IEEE 802.15.3 고속 무선 PAN(Personal Area Network)에서 링크상태에 따른 동적 채널할당)

  • 곽동원;이승형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.844-851
    • /
    • 2004
  • Various types of error are caused due to many factors of various environment in air interface channel of wireless communications. In this case, the reliability of the channel is much lower than that of wired case. IEEE 802.15.3 high-rate WPAN, which operates in an ad hoc networking environment, is more susceptible to such errors. The problem has been investigated for wireless LANs, for example, as follows. If the queue size of a certain node is longer than that of other nodes, the node estimates that its channel state is bad and the resource of the node is decreased. However this method has a disadvantage that a central controller must always monitor the status. To avoid this disadvantage, in this paper, a new MAC protocol that the throughput of overall piconet is increased by LDS (Link-status Dependent Scheduling) is proposed.

Adjusting the Retry Limit for Congestion Control in an Overlapping Private BSS Environment

  • Park, Chang Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1881-1900
    • /
    • 2014
  • Since 802.11 wireless LANs are so widely used, it has become common for numerous access points (APs) to overlap in a region, where most of those APs are managed individually without any coordinated control. This pattern of wireless LAN usage is called the private OBSS (Overlapping Basic Service Set) environment in this paper. Due to frame collisions across BSSs, each BSS in the private OBSS environment suffers severe performance degradation. This study approaches the problem from the perspective of congestion control rather than noise or collision resolution. The retry limit, one of the 802.11 attributes, could be used for traffic control in conjunction with TCP. Reducing the retry limit causes early discard of a frame, and it has a similar effect of random early drops at a router, well known in the research area of congestion control. It makes the shared link less crowded with frames, and then the benefit of fewer collisions surpasses the penalty of less strict error recovery. As a result, the network-wide performance improves and so does the performance of each BSS eventually. Reducing the retry limit also has positive effects of merging TCP ACKs and reducing HOL-like blocking time at the AP. Extensive experiments have validated the idea that in the OBSS environment, reducing the retry limit provides better performance, which is contrary to the common wisdom. Since our strategy is basically to sacrifice error recovery for congestion control, it could yield side-effects in an environment where the cost of error recovery is high. Therefore, to be useful in general network and traffic environments, adaptability is required. To prove the feasibility of the adaptive scheme, a simple method to dynamically adjust the value of the retry limit has been proposed. Experiments have shown that this approach could provide comparable performance in unfriendly environments.

A Fair MAC Algorithm under Capture Effect in IEEE 802.11 DCF -based WLANs (IEEE 802.11 무선랜에서 캡쳐 효과를 고려한 Fair MAC 알고리즘)

  • Jeong, Ji-Woong;Choi, Sun-Woong;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.386-395
    • /
    • 2010
  • Widespread deployment of infrastructure WLANs has made Wi-Fi an integral part of today's Internet access technology. Despite its crucial role in affecting end-to-end performance, past research has focused on MAC protocol enhancement, analysis, and simulation-based performance evaluation without sufficiently considering a misbehavior stemming from capture effect. It is well known that the capture effect occurs frequently in wireless environment and incurs throughput unfairness between nodes. In this paper, we propose a novel Fair MAC algorithm which achieves fairness even under physically unfair environment. While satisfying the fairness, the proposed algorithm maximizes the system throughput. Extensive simulation results show that the proposed Fair MAC algorithm substantially improves fairness without throughput reduction.

Analysis and study of Deep Reinforcement Learning based Resource Allocation for Renewable Powered 5G Ultra-Dense Networks

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.226-234
    • /
    • 2024
  • The frequent handover problem and playing ping-pong effects in 5G (5th Generation) ultra-dense networking cannot be effectively resolved by the conventional handover decision methods, which rely on the handover thresholds and measurement reports. For instance, millimetre-wave LANs, broadband remote association techniques, and 5G/6G organizations are instances of group of people yet to come frameworks that request greater security, lower idleness, and dependable principles and correspondence limit. One of the critical parts of 5G and 6G innovation is believed to be successful blockage the board. With further developed help quality, it empowers administrator to run many systems administration recreations on a solitary association. To guarantee load adjusting, forestall network cut disappointment, and give substitute cuts in case of blockage or cut frustration, a modern pursuing choices framework to deal with showing up network information is require. Our goal is to balance the strain on BSs while optimizing the value of the information that is transferred from satellites to BSs. Nevertheless, due to their irregular flight characteristic, some satellites frequently cannot establish a connection with Base Stations (BSs), which further complicates the joint satellite-BS connection and channel allocation. SF redistribution techniques based on Deep Reinforcement Learning (DRL) have been devised, taking into account the randomness of the data received by the terminal. In order to predict the best capacity improvements in the wireless instruments of 5G and 6G IoT networks, a hybrid algorithm for deep learning is being used in this study. To control the level of congestion within a 5G/6G network, the suggested approach is put into effect to a training set. With 0.933 accuracy and 0.067 miss rate, the suggested method produced encouraging results.

CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs (CARA: IEEE 802.11 무선랜에서 충돌을 인지한 적응적 전송속도 조절기법)

  • Kim, Jong-Seok;Kim, Seong-Kwan;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.154-167
    • /
    • 2006
  • Today's IEEE 802.11 WLANs(Wireless LANs) provide multiple transmission rates so that different rates can be exploited in an adaptive manner depending on the underlying channel condition in order to maximize the system performance. Many rate adaptation schemes have been proposed so far while most(if not all) of the commercial devices implement a simple open-loop rate adaptation scheme(i.e., without feedback from the receiver), called ARF(Automatic Rate Fallback) due to its simplicity. A key problem with such open-loop rate adaptation schemes is that they do not consider the collision effect, and hence, malfunction severely when many transmission failures are due to collisions. In this paper, we propose a novel rate-adaptation scheme, called CARA(Collision-Aware Rate Adaptation). The key idea of CARA is that the transmitter station combines adaptively the Request-to-Send/Clear-to-Send(RTS/CTS) exchange with the Clear Channel Assessment(CCA) functionality to differentiate frame collisions from frame transmission failures cause by channel errors. Therefore, compared with other open-loop rate adaptation schemes, CATA is more likely to make the correct rate adaptation decisions. Through extensive simulation runs, we evaluate our proposed scheme to show that our scheme yields significantly higher throughput performance than the existing schemes in both static and time-varying fading channel environments.

Efficient Symbol Detection Algorithm for Space-frequency OFDM Transmit Diversity Scheme (공간-주파수 OFDM 전송 다이버시티 기법을 위한 효율적인 심볼 검출 알고리즘)

  • Jung Yun ho;Kim Jae seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.283-289
    • /
    • 2005
  • In this paper, we propose two efficient symbol detection algorithms for space-frequency OFDM (SF-OFDM) transmit diversity scheme. When the number of sub-carriers in SF-OFBM scheme is small, the interference between adjacent sub-carriers may be generated. The proposed algorithms eliminate this interference in a parallel or sequential manlier and achieve a considerable performance improvement over the conventional detection algorithm. The bit error rate (BER) performance of the proposed detection algorithms is evaluated by the simulation. In the case of 2 transmit and 2 receive antennas, at $BER=10^{-4}$ the proposed algorithms achieve the gain improvement of about 3 dB. The symbol detectors with the proposed algorithms are designed in a hardware description language and synthesized to gate-level circuits with the $0.18{\mu}m$ 1.8V CMOS standard cell library. With the division-free architecture, the proposed SF-OFDM-PIC and SF-OFDM-SIC symbol detectors can be implemented using 140k and 129k logic gates, respectively.